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Abstract
Mechanisms of resource allocation are essential for maternal and fetal survival, particularly

when the availability of nutrients is limited. We investigated the responses of feto-placental

development to maternal chronic protein malnutrition to test the hypothesis that maternal

low protein diet produces differential growth restriction of placental and fetal tissues, and

adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J

female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20%

protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for mor-

phometric, histological and quantitative RT-PCR analyses, which included markers of tro-

phoblast cell subtypes. Potential endocrine adaptations were assessed by the expression

of Prolactin-related hormone genes. In the low protein group, placenta weight was signifi-

cantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses

became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein

group, though smaller than controls, was larger than expected for body size. The relative

size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5

and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and

energy storing glycogen cells, was smaller in low protein placentas as well as the expres-

sion of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1
was altered in response to low protein diet: expression was elevated at E17.5 when fetuses

were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal

growth. This model suggests that nutrients are preferentially allocated to sustain fetal and

brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in

mitigating impacts of poor maternal nutrition on fetal growth.
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Introduction
In humans, as in all eutherians, prenatal growth relies on the nutrient supply and gas exchange
mediated by the placenta. The inadequate availability of nutrients and/or oxygen for the fetus
due to environmental factors such as maternal malnutrition or deficient blood flow caused by
placental insufficiency, frequently results in intrauterine growth restriction (IUGR) [1–3].
Although the resulting smaller size has been considered a relatively beneficial adjustment and
an adaptive response under stressful conditions [4], IUGR is associated with higher rates of
perinatal morbidity and mortality, as well as long term consequences such as obesity, cardio-
vascular disease or type II diabetes in human populations [5]. Consequently, there is great
interest in understanding which changes occur in feto-placental development under stressful
conditions and their adaptive role in sustaining fetal growth as well as the demand of energy
for the growth and maintenance of the placenta [6, 7]. Animal models provide a valuable tool
to gain insight into these questions and have been extensively used to evaluate the effect of dif-
ferent perturbations on prenatal development [8, 9]. Experiments in rodents support the
hypothesis that maternal malnutrition does not affect each fetal tissue to the same extent. In
humans as well as in animal models, brain weight and neurocranial size of neonates and adults
are usually less affected by nutrient restriction than body weight and facial size, which suggest
an adaptive “brain sparing” effect [10–13]. However, direct tests of in utero trade off between
tissues are deficient and the available studies in humans usually measure overall fetal and pla-
cental weight only [14].

Experimental studies in rats and mice show that isocaloric low protein diets and reduced
energy intake throughout gestation induce changes in placental weight and morphology [15–
21]. These effects are highly variable depending on the IUGR model and the gestational age
analyzed. Accordingly, it is observed that protein restriction during pregnancy can induce sig-
nificant reduction in fetal and/or placental weight already at mid-gestation, or only by the very
end of pregnancy [15, 16, 22–25]. Despite the intensive research in this area, most studies have
focused on the effect of short term malnutrition, and thus, the effects of chronic malnutrition
-i.e., starting before and continuing throughout gestation- which more closely resembles
human conditions of poor nutrition, remain largely unexplored.

Of the three main compartments in the mouse placenta—maternal decidua, junctional zone
and labyrinth—the labyrinth layer is the most studied due to its essential role in feto-maternal
exchange of gases and nutrients [26, 27], while the junctional zone is still relatively poorly
understood. Glycogen trophoblast cells, which are ubiquitous in the junctional zone, accumu-
late glucose and store it in the form of glycogen, which suggests a potential role of the junc-
tional zone as an energy storing layer that may play an adaptive role [28–31]. In addition,
trophoblast giant cells, spongiotrophoblast and glycogen trophoblast cells within the junctional
zone express many hormones which in mice include 22 related to Prolactin [32–35], some of
which are implicated as drivers of changes in maternal metabolism during pregnancy. The
human placenta also produces several metabolic hormones and ones related to Prolactin and
Growth Hormone are also associated with changes in maternal metabolism thought to pro-
mote nutrient availability for transport across the placenta [36].

This study examined feto-placental growth during mid to late gestation in a mouse model of
long term maternal protein undernutrition. Insufficient protein intake and overreliance on car-
bohydrates is prevalent in low income countries as well as among vulnerable populations in
middle and high income countries [37]. We hypothesized that exposure to chronic low protein
diet during prenatal growth would result in a differential resource allocation among feto-pla-
cental tissues that is evidenced by an asymmetric growth impairment. Fetal and placental
growth parameters were measured at three points in gestation: E10.5 and E17.5 represent the
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developing and mature placenta before and after the mid-gestation, and in which the labyrinth
and junctional zone can be distinguished [38]. E17.5 and E18.5 were analyzed to register
changes related to the rapid growth of the fetus by the end of gestation [39]. In particular, neu-
rogenesis in most brain cell populations peaks between E9.5 (just after neural tube formation)
and E18.5 [40], resulting in an important brain expansion especially during late pregnancy
[41]. To provide a more refined measure of the growth effects of the protein restriction model,
we examined the effects of diet on craniofacial shape and brain morphology. Previous studies
using rats as an animal model, show that craniofacial shape can be affected by maternal nutri-
tional stress [12, 13]. Particularly, specimens affected by this environmental perturbation dis-
played relatively shorter and wider face and neurocranium. A significant limitation of such
studies is the focus on postnatal stages, while the changes induces in early ontogeny have not
been explored yet. The results of this study will help to understand how maternal undernutri-
tion differentially affects fetal, maternal and placental development and begin to reveal adap-
tive responses of the placenta.

Materials and Methods

Experimental design
C57BL/6J male and female 4-wk-old mice were purchased from The Jackson Laboratory (Bar
Harbor, ME) and maintained on a 12-h light-12-h dark cycle for 4 weeks. Then, nulliparous
females were randomly divided into two groups: Control (C), with ad libitum access to a 20%
protein diet; and Low Protein (LP), with ad libitum access to a 6% protein diet (TD91352 and
TD90016, Harlan Teklad, Madison). Both diets are isocaloric (3.8 Kcal/g) but differ in the
amount of protein in the form of casein and DL-Methionine. No significant differences were
found in the daily consumption of food among dams fed on control and low protein diets (F1-
63 = 0.69; P = 0.41). The mice were bred after two weeks. Fetuses and placentas of at least 5 lit-
ters by conception day and treatment were dissected at embryonic days (E) 10.5, 17.5 and 18.5.

All animal care and procedures were conducted in the compliance with the University of
Calgary Health Sciences Animal Care Committee and with the guidelines of the Canada Coun-
cil on Animal Care (Protocol number M10076).

Weight
Maternal, embryonic and placental weights were taken at the three time points. An ANOVA
test was used to compare maternal weight in control and low protein groups before and after
dissecting the uterus. Differences in embryo and placental size were tested using a mixed
model ANOVA, in which maternal diet was the categorical predictor or fixed effect, while
dams were included as a random factor. Due to high inter- and intra-litter variation in embryo
development at E10.5, an univariate analysis of covariance (ANCOVA) including the number
of tail somites as a covariate [42] was used in order to remove the variation due to development
on feto-placental size.

Cranial and brain size
Mouse heads were fixed overnight in 4% PFA. High resolution X-ray micro-computed tomog-
raphy (μCT) images of the heads were acquired and 3D isosurfaces reconstructed as described
in [43]. In addition, a subsample of specimens at E18.5 was re-scanned-using the same scan-
ning protocol- to obtain images of the brain tissues. For this purpose, after 4% PFA immersion,
the specimens were soaked overnight in Lugol’s iodine, which is used as a μCT contrast agent
[44–46]. Briefly, 0.5 g of iodine and 1.5 g potassium iodide (KI) were mixed in 100 ml of water,
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heads were immerse in the iodine solution and keep at 4°C overnight. Then, the samples were
rinsed in PBS to remove the excess of contrast agent and scanned.

A set of 42 bilateral anatomical points (landmarks) was digitized from the 3D reconstruction
of each mouse cranium and a set of 57 landmarks were digitized on the μCT scans of the brain
using Amira software (S1 Table). While the landmarks of the cranium were digitized on the
reconstructed surfaces of the skull, a different approach was used for brain landmarking. First, a
transversal plane that goes through the most anterior and posterior points of the brain was estab-
lished. On this transversal slice 24 points were digitized, which mainly describe the relative length
and width of the brains. Additionally, a parasagittal plane starting from the most anterior point
of the left olfactory bulb was defined and 25 points were digitized on this view to capture varia-
tion in the height profile and in the antero-posterior dimensions as well (S1 Table).

The centroid size of the cranium and the brain were estimated as the square root of the
summed squared distances from all landmarks to the centroid of each configuration [47].
While landmark-based methods have been widely used for estimating skull size, brain size has
usually been assessed by its volume. In a μMRI sample of mouse brains, we had previously
found that the centroid size (as measured here) and volume are highly correlated (0.928,
p = 0.003) showing that the protocol used in this work is reliable to estimate brain size.

Size was compared between treatments at E17.5 and E18.5 by means of a mixed model
ANOVA, using treatment as a fixed effect and dam as a random effect. A linear model was
adjusted to the log transformed centroid sizes on body weight and the residuals from this
model (i.e., deviations of actual size of each specimen from the value predicted by body weight)
were compared by treatment and age. Positive values are expected if cranial and brain size are
larger than expected for a given body weight. Head size was not estimated at E10.5 due to the
difficulties of scanning young embryos.

Craniofacial shape
All configurations of landmarks were translated to a common origin, scaled to the same size and
rotated by minimizing the total sum of squared deviations of every landmark configuration from
the mean configuration [47]. Differences among configurations that remain after this procedure
represent actual shape differences. The effect of treatment and age on cranial shape was evaluated
by means of a between-group principal component (bg-PCA) analysis. This method focuses on
the effect of the specific factors to be tested [48] and thus is adequate to assess differences among
groups in skull shape. In this analysis the superimposed coordinates of landmarks (i.e., shape var-
iables) of all specimens were projected onto the eigenvectors of the between-groups covariance
matrix. Shape changes along principal components were visualized by warping an average sur-
face using the thin-plate spline procedure implemented by Landmark software [49]. Additionally,
the variation in shape for each group was estimated as the mean of the squared Procrustes dis-
tances between each individual configuration from its group mean [50, 51]. This distance was
estimated as the square root of the sum of squared distances between corresponding landmarks
of each configuration and the group mean. To test whether the amount of variation differed
among groups, we computed an ANOVA test of the individual deviations, using age and treat-
ment as factors, which is an extension of Levene's test for multivariate data.

Histological and in situ hybridization analysis of placentas
Placentas were weighed, fixed overnight in 4% phosphate buffered paraformaldehyde (PFA)
and embedded in OCT (VWR) or dehydrated through ethanol and xylene gradients and
embedded in paraffin. In situ hybridization using probes for Tpbpa and Pcdh12 was performed
as described previously [31].
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For in situ hybridization, at least three central sections from at least three placentas (n = 3)
were analyzed for each group and developmental stage. Placentas were bisected near the mid-
point before dehydration and embedding and then at least one hundred 10 μm sections were
taken for each placenta. From those sections, three central ones separated by 200 μmwere chosen
on the basis of the morphology: larger size and more conical shape of trophoblast for E10.5;
larger size, presence of the umbilical cord vessels and/or central canal or spiral arteries for E17.5
and E18.5. The borders between three main placenta layers were distinguished by using the
Tpbpa gene–marker of spongiotrophoblast and glycogen trophoblast cells in the junctional zone,
and cell morphology. Glycogen trophoblast cells were distinguished by expression of Pcdh12
mRNA. High magnification pictures were taken under the Leica microscope and then photo-
merged using a ‘Photomerge’ tool in the ‘Automate’ option of Photoshop software. Measure-
ments of placenta layers areas and glycogen trophoblast cells areas were done using ImageJ
software by manual outlining of the analyzed areas and the ‘polygon selection’ tool. Statistical sig-
nificance was evaluated using two-tailed Student’s t-test assuming unequal variances. Addition-
ally, a principal component analysis was performed using the areas of each placenta layer
standardized by the total area to account for differences in size between ages. This multivariate
analysis was used to reduce the dimensionality and summarise the variance in the dataset.

Quantitative real-time PCR (qRT-PCR) for placental gene expression
From each litter, at least two specimens were dissected in order to isolate samples for RNA
analysis. The corresponding placentas were immersed in 700 ml of Trizol, frozen and stored at
-80°C until RNA extraction. The RNA was then processed using RNeasy Mini Kits (Qiagen)
according to the manufacturer’s protocol. 1μg total RNA of three biological samples by experi-
mental group was reverse-transcribed using the RT2 First Strand Kit (Qiagen). Complementary
DNA samples produced were used for real time PCR to quantify the expression of several rep-
resentative placenta-produced, prolactin-related genes (Prl2c2, Prl3a1, Prl3b1, Prl3d1, Prl5a1,
Prl7c1, Prl8a8,), as well as spongiotrophoblast and glycogen trophoblast cell marker (Tpbpa), a
glycogen trophoblast cell-specific marker (Pcdh12) and Gapdh. Quantitative RT-PCR analyses
were performed with a DNA Engine Opticon 2 system (Bio-Rad Laboratories, Inc., MA, USA)
using detection with SYBR Green I. Each sample was assessed in duplicate.

Real-Time qRT-PCR forward and reverse primers were obtained as QuantiTect Primer
Assays or RT2 qPCR Primer Assays (Qiagen) for Prl3d1 (QT01052219), Prl5a1 (QT00139573),
Prl3a1 (QT00131782), Prl8a8 (QT00124915), Prl7c1 (QT00128646), Pcdh12 (QT00100625),
GAPDH (PPM02946E). Forward and reverse primers for Prl2c2 were 5’-TGTGTGCAATGAG
GAATGGT-3’ and 5’-TAGTGTGTGAGCCTGGCTTG-3’; for Prl3b1 were 5’-CCACACTGCT
GCAATCCTTA-3’ and 5’-TGACCATGCAGACCAGAAAG-3’, and for Tpbpa were 5’-AAGT
TAGGCAACGAGCGAAA-3’ and 5’-AGTGCAGGATCCCACTTGTC-3’, respectively.

In order to determine the differences in target gene expression between control and low pro-
tein diet groups, relative standard curves based on series of 5 dilutions were obtained for each
gene using an independent placenta sample from the control group. Each curve was done in
triplicate and the average used as the reference. The ratio between the target and Gapdh expres-
sion was calculated to provide relative gene expression. Those normalized values were then
used to estimate the fold-change between groups and compared by t tests.

Results

Placenta, embryo and maternal weight are reduced by low protein diet
Nulliparous female mice were fed control or low protein diets for two weeks prior to mating
with normal fed males. Time to mating and litter size estimated at E17.5 and E18.5 did not
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differ between experimental groups. The number of pups in the control group was 7.78±2.94 at
E17.5 and 7.11±2.31 at E18.5, while in the low protein groups there were 7.5±2.12 and 8.42
±1.61, respectively. Maternal weight was assessed after removal of the pregnant uterus and was
not different between control and low protein groups at E10.5, but was significantly lower in
the low protein group at E17.5 and E18.5 (Fig 1). Moreover, maternal weight of the low protein
group significantly declined between E10.5 to E18.5 (P<0.001, assessed by two tailed t-test),
while the weight of control mothers did not change significantly (Fig 1).

Embryo and placental weights were measured, and the number of tail somites was also
assessed at E10.5 in order to account for potential differences in developmental stages. At
E10.5, the effect of the number of tail somites was highly significant on both placenta and
embryo weights (Table 1, Fig 1). After removing the effect of tail somites, there were no signifi-
cant differences in embryo weight between control and low protein groups at E10.5 (Table 1,
Fig 1). Fetal weight in the low protein group was slightly reduced, though not significantly, at
E17.5 (F1,13 = 1.264, P = 0.281) but was 19% lower at E18.5 (F1,13 = 30.55, P<0.01) (Fig 1). In
contrast to fetal growth, the low protein diet significantly reduced placenta weight as early as

Fig 1. Maternal, placental and fetal weights at different developmental stages. E: embryonic day. The
error bar represents the mean ± SD. *Different from control, P<0.051; **Different from control, P<0.01.

doi:10.1371/journal.pone.0152227.g001

Feto-Placental Growth and Chronic Malnutrition

PLOS ONE | DOI:10.1371/journal.pone.0152227 March 28, 2016 6 / 18



E10.5 (Table 1, Fig 1) and this persisted at E17.5 and E18.5, being 15% and 17% lighter than in
control animals (F1,13 = 9.6, P<0.01; F1,13 = 25.5, P<0.01). The association between placental
and fetal weight at each developmental stage, as measured by a Pearson correlation coefficient,
was low at E17.5 (r = 0.45, P<0.01), but increased significantly by E18.5 (r = 0.69, P<0.01).

Fetal head size is only slightly reduced by low protein diet
At E17.5, cranial size was slightly (2.5% smaller) but not significantly different between control
and low protein groups (F1,9 = 1.11, P = 0.32) (Fig 2B). Similar results were found for the face
and neurocranium, which were 2.3% and 2.5% smaller in the low protein group (Fig 2C and
2D) but did not differ significantly from the control group (Face: F1,9 = 0.616, P = 0.453; Neu-
rocranium: F1,9 = 1.26, P = 0.29). By E18.5, the overall cranial size as well as the size of face and
neurocranium displayed drop of around 5% in the low protein group at E18.5 (Fig 2B, 2C and
2D). Significant differences were found between the low protein and control groups at this age
(Cranium: F1,13 = 22.87, P<0.001; Face: F1,13 = 21.3, P< 0.001; Neurocranium: F1,13 = 24.11,
P< 0.001).

Cranial size and fetal body weight displayed a strong linear relationship during the late
period of fetal growth (Fig 3A), with the slopes of the regressions being 0.59 for the cranium,
0.66 for the face and 0.54 for the neurocranium. Head size adjusted for expected body size was
higher in the low protein group compared to controls (Fig 3B). This indicates that individuals
in the low protein groups have larger heads relative to body size than controls. Differences in
the residuals between control and low protein groups were significant, particularly for the cra-
nium and face (Cranium: F1,129 = 12.61, P<0.01; Face: F1,129 = 55.77, P<0.01; Neurocranium:
F1,129 = 3.44, P = 0.06). The results obtained for cranial size are taken as proxies of brain
growth. This is supported by the strong association between the centroid size of both structures
evaluated at E18.5 (r = 0.699, P<0.01). Accordingly, there was a significant reduction in brain
size by E18.5 in the low protein group (F1,17 = 4.52, P<0.05). The mean size of the brain was
reduced by 4.5 per cent, a decrease similar in magnitude to that found for the neurocranium
(Fig 2F).

Cranial shape is affected by low protein diet
Variation in cranial shape was also assessed among treatments and age groups (Fig 4). The first
principal component summarized shape variation related to fetal growth, given that E17.5
specimens were clearly separated from E18.5 along this axis (Fig 4A). Shape variation between
age groups manifested primarily in the reduction of the relative width of the vault, the length-
ening of the face and the less flexed cranial base at 18.5 days post-conception in relation to the
cranial shape at 17.5 (Fig 4B). The second component accounted for differences in shape
between treatments, which were characterized by wider and shorter skulls in the low protein
groups compared to controls at both ages. These shape changes are shown as wireframes in S1

Table 1. ANCOVA test for placental and embryonic weight at E10.5.

Variable Factors F p

Placenta weight Tail somites 74.95 <0.0001

Diet 7.25 0.02

Tail somites*Diet 0.09 0.77

Embryo weight Tail somites 248.49 <0.0001

Diet 0.14 0.72

Tail somites*Diet 0.21 0.65

doi:10.1371/journal.pone.0152227.t001
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Fig. Interestingly, the amount of variation in shape between specimens was significantly
reduced from E17.5 to E18.5 in the control group but not in the low protein group (Fig 4C).

The junctional zone of the placenta is preferentially reduced by low
protein diet
Given that the first morphological evidence of impact of the low protein diet was on placental
weight, well before maternal and fetal effects, we analyzed placenta structure and function in

Fig 2. Changes in skull and brain size in the low protein fetuses.Coordinates of landmarks (A) and centroid size of the cranium (B), face (C) and
neurocranium (D), by treatment and age. Units in μm. Coordinates of landmarks and semilandmarks digitized in sections of sagittal and axial planes of the
brain (E). White lines represent the places where the transversal and sagittal sections were measured. Brain centroid size at E18.5 in the low protein and
control groups (F). The error bar represents the mean ± SD. **Different from control, P<0.01. *Different from control, P<0.05.

doi:10.1371/journal.pone.0152227.g002
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more detail. At all stages analyzed, the areas of the decidua and labyrinth were not different
between low protein and control placentas. However, starting as early as E10.5, there was a sig-
nificant reduction in the low protein group in the size of the junctional zone as defined by
expression of the Tpbpa gene which is expressed in both spongiotrophoblast and glycogen tro-
phoblast cells (Fig 5A and 5B). On histological sections, the reduction in cross-sectional areas
was 33%, 34% and 22% at E10.5, 17.5 and 18.5 respectively. When the areas of the three main
layers are analyzed together, as expected, a clear separation is seen between placentas at E10.5
and the other two ages (Fig 5C). Differences between treatments were also observable along the
second principal component, although they were not as large as between age groups. The vari-
able that contributed most to this component was the area of the junctional zone, which was
relatively smaller in the specimens located at the positive values of the second component (the
region where most specimens of the low protein groups are located).

To further investigate the morphological changes in the junctional zone, quantitative real-
time PCR assays were performed. Expression of Pcdh12mRNA, a marker of glycogen tropho-
blast cells, was significantly reduced in low protein placentas at E10.5 and E17.5 as compared
to the control group, though there was no significant difference by E18.5 (Fig 6). By contrast,
TpbpamRNA expression was not different suggesting that glycogen cells were specifically

Fig 3. Relationship between fetal skull size and body weight in low protein and control groups. A) Linear regressions between log centroid size (CS)
and log body weight (BW) for the cranium, face and neurocranium; B) residuals of linear regressions between log CS and BW. Triangles: low protein group;
circles: control group; empty symbols: E17.5; filled symbols: E18.5.

doi:10.1371/journal.pone.0152227.g003
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affected and not spongiotrophoblast cells. Based on in situ hybridization, the total area per sec-
tion of Pcdh12-positive cells at E10.5 (0.53±0.04mm2 vs 0.32±0.13mm2) and E17.5 (0.33
±0.08mm2 in control and 0.20±0.06mm2) tended to be reduced in the low protein group
though the differences were not statistically significant. The parietal trophoblast giant cell com-
ponent of the placenta did not seem to be affected by low protein diet at E10.5 (Fig 5A and 5B),
E17.5 and E18.5 based on examination of histological sections. Consistent with this, expression
of parietal trophoblast giant cell marker genes Prl2c2, Prl3b1, and Prl3d1 based on qRT-PCR
was not different between low protein and control group (Fig 6).

Expression of Prolactin-related hormone genes
To determine if low protein diet induced compensatory changes in the endocrine function of
the placenta, we assessed the expression of a subset of the placenta-specific, Prolactin-related
hormones which have been implicated in regulation of metabolism and fetal growth [25, 26].
We focused on 7 of the 22 family members which are expressed in late gestation when fetal

Fig 4. Analysis of skull shape based on three‐dimensional craniofacial landmarks. A) Distribution of specimens of low protein (LP) and control (C)
groups along the between-group principal components (bg-PC). Ellipses represent the specimens of each group within the 1SD confidence interval. B)
Shape changes corresponding to the observed extremes in the positive and negative directions of first two components shown as a warped surface of a
mouse skull. C) Shape variance within each experimental group and age measured in units of Procrustes distance.

doi:10.1371/journal.pone.0152227.g004
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growth increases exponentially and representing at least one member from each of the six sub-
families [26]: Prl2c2, Prl3a1, Prl3b1, Prl3d1, Prl5a1, Prl7c1 and Prl8a8. Among these genes,
only expression of Prl3a1 was significantly different between the low protein and control
groups. Prl3a1 is expressed only by spongiotrophoblast cells in the junctional zone and levels
are first detectable at E14.5 and increase towards term, paralleling the increase in fetal growth
[52]. Interestingly, while Prl3a1mRNA levels seemed to be elevated in the low protein group at
E17.5, expression declined and was significantly lower than control by E18.5, paralleling the
arrest of fetal growth (Fig 6).

Discussion
In this study we demonstrate that the fetal, placental and maternal compartments are differen-
tially affected by prolonged maternal protein restriction in mice. Overall, placenta size and
function was first to be affected as a result of the low protein diet, as early as E10.5. The weight
of the mother was next to be affected (E17.5), while the embryo weight did not display any sig-
nificant change until the very end of the gestation (E18.5), and cranial size was relatively spared

Fig 5. Decrease of junctional zone area in low protein placentas at E10.5, E17.5 and E18.5. A) In situ hybridization for Tpbpa, marker of junctional zone.
Purple area: junctional zone; dashed area: parietal trophoblast giant cells (P-TGC); B) Bars represent average area of given placenta layer on a histological
section ± SD. *Different from control, P<0.05; **Different from control, P<0.01; Dec: decidua; JZ: junctional zone; Lab: labyrinth; P-TGC: parietal trophoblast
giant cells. Scale bar– 1 mm. C) Principal component analysis of the areas of the three main placenta layers for the control (C) and low protein groups (LP).
The bars represent the loading of each variable on the first two principal components (PC).

doi:10.1371/journal.pone.0152227.g005
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compared to the rest of the fetus (Fig 7). Further, we show that craniofacial shape is altered at
E17.5 but to a greater extent at E18.5 in the low protein diet group. These differences in timing
suggest that adaptations in the placenta and mother take place during early and mid pregnancy
to maintain fetal growth, and especially the growth of brain. Other models for IUGR, such as
Igf2 knockout mice and rats, and mice fed on protein or calorie restricted diets, also show that
fetal weight is not altered until the end of gestation [22, 23, 52, 53]. Nonetheless, most

Fig 6. Expression of seven prolactin family genes, Pcdh12 and Tpbpa in control and low protein placentas at E10.5, E17.5 and E18.5.Missing bars
mean that the particular gene is not expressed at the given developmental stage. *Different from control, p<0.05. The error bar represents the mean ± SD.
C–control group; LP–low protein group.

doi:10.1371/journal.pone.0152227.g006

Fig 7. Schematic summary of the effects of low protein diet on placental, fetal andmaternal weight
and on the head size. C–control group; LP–low protein group; red color–weight significantly reduced as
compared to the control group of the same age; blue color–cranial and brain size significantly different from
the control of the same age.

doi:10.1371/journal.pone.0152227.g007
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experiments have evaluated only one developmental stage, usually at E17.5 or later, and when
more sampling points have been included, they have not started earlier than E14.5 [24, 54]. As
our results point out, data on early gestation are essential to assess the processes that underlie a
given outcome at a specific time point.

One phenomenon that has attracted considerable attention in association to IUGR in
human neonates is that brain tissues are often affected to a lesser extent than body mass [14,
55]. We show here that even though normal fetal and brain growth cannot be maintained until
the end of gestation under extended periods of maternal protein malnutrition, head size is
larger than predicted by body size in the restricted group. This evidence of head-sparing is con-
sistent with a preferential allocation of nutrients to brain tissues during pregnancy when the
brain is expected to be especially demanding due to its high growth rate. With few exceptions,
the majority of the animal research on perturbed growth of prenatal brain has been conducted
in sheep models [56, 57]. Studies on rodents, while numerous, mainly focus on the negative
effects of early environmental perturbations assessed postnatally [58]. Recently, a rising of cere-
bral blood velocity was observed in fetal mice exposed to acute hypoxia, which suggests active
regulation of cerebral oxygenation and brain sparing in fetal mice [59]. This potential mecha-
nism has not been tested under other stimuli such as nutrient restriction. However, our results
are consistent with these findings and support the use of mice fed on low protein diets through-
out pregnancy as a model to study head sparing.

In addition to brain and cranial size, nutrient restriction also altered cranial shape. This is con-
sistent with earlier work that showed that both pre- and postnatal nutritional stress alters cranio-
facial shape [12, 60, 61]. This occurs primarily through the altered proportions of the brain,
basicranium and face. If relative brain size is preserved but the rest of the skull is smaller, this
results in an integrated series of changes that impact mid-facial projection, basicranial shape and
the basicranial angle as well as the relative proportion of the neurocranium to the remainder of
the skull [62–65].These are exactly the shape changes that we observed in our results. Therefore,
these shape effects provide us with an additional indication of how the fetus is responding to the
maternal malnutrition in our design. While we find detectable shape effects at E17.5, these are
greatly exacerbated by E18.5 which is consistent with the interpretation that the fetus is spared
during early gestation but that the effects become increasingly severe in late gestation.

The sequence of events in response to protein restriction suggests how fetal growth is
spared. Protein restriction resulted in reduced placental size evident at early gestation (E10.5)
and this reduction persisted until the end of pregnancy. Interestingly, chronic maternal protein
restriction did not affect all placental layers to the same extent. The placenta layer most affected
by low protein diet was the junctional zone, similar to previous results in undernourished mice
[16, 18, 19], and specifically glycogen trophoblast cells. Since glycogen trophoblast cells accu-
mulate and store glucose in the form of glycogen during gestation, we hypothesize that they act
as the nutrient buffer between maternal supply and fetal demand, accumulating excess glucose
from maternal blood in early and mid gestation, in order to utilize it in late gestation when the
extra, easily accessible energy is needed for the rapid embryonic growth. We hypothesize that
the reduction in glycogen trophoblast cells in placentas from undernourished pregnancies sim-
ply reflects the fact that glucose is limited. Between E10.5 and 17.5, though fetal growth was
still normal, maternal (non-uterine) body weight was beginning to fall, indicating maternal
“sacrifice” in favor of the growing fetus. It will be interesting to explore specific tissues and how
they respond, and also to know what signals drive catabolism in the mother.

The placenta is an important endocrine organ, producing dozens of different hormones
thought to regulate maternal adaptations and fetal responses to pregnancy. In mice, over half
of the polypeptide hormones made by the placenta are encoded by 22 placenta-specific, Prolac-
tin-related hormone genes. We observed a significant change in expression in response to low

Feto-Placental Growth and Chronic Malnutrition

PLOS ONE | DOI:10.1371/journal.pone.0152227 March 28, 2016 13 / 18



protein diet in only one of them, Prl3a1, which is expressed only in spongiotrophoblast cells of
the junctional zone from E14.5 to term [66]. Its expression seemed to be elevated compared to
controls at E17.5, but dramatically declined by E18.5 in the low protein fed group. Prl3a1 func-
tion is unknown, though it is most closely related to Prl3b1 and Prl3d1 which work through the
Prolactin receptor [34]. Other studies have shown that Prl3a1mRNA levels are significantly
reduced at term in the placenta of feed restricted mice [67] and administration of the synthetic
corticosteroid, dexamethasone, increases expression of Prl3a1 in late gestation [68]. Overall
these findings suggest a potential role for Prl3a1 in normal late gestation for promotion of fetal
growth, but this becomes dysregulated by term in response to low protein diet. What drives
this change is unknown.

The strengths of this study lie in looking at maternal and fetal growth at multiple time
points, including early pregnancy, and in analyzing changes in placenta under maternal malnu-
trition on cellular and hormonal levels. In humans there is evidence of decreased fetal and pla-
cental weight at term related to in utero nutrient compromise caused by events such as famine
or fasting [69]. However, those studies report only the gross placental shape and size. It would
be interesting to know which specific cell types in human placenta are particularly affected by
in utero undernutrition and which placental hormones do not follow the normal temporal pat-
tern of expression in such conditions. This is an important gap in knowledge to fill in order to
understand the role of placenta in mediating nutritional challenges in human pregnancy.
Human placenta-specific hormones related to Growth Hormone have been implicated in regu-
lation of maternal metabolism and fetal growth [36] and are the most obvious candidates.

Evaluation of growth in human fetuses is usually done using ultrasound from which mea-
surements such as femoral length and head circumference are obtained and then compared
with published standards in order to identify growth retardation [70]. A small placenta size is
known to be a cause of IUGR in humans and it has been shown that placenta volume predicts
IUGR before fetal growth is compromised [71]. However, percentile curves for placental weight
are rare [72–74]. Our study, although based on a mouse model, reinforces the importance of
evaluating placental size for diagnostic purposes [75]. Early detection of retarded placental
growth may allow improved prediction of IUGR before fetal growth is compromised along
with the attendance of longer-term health consequences. These results highlight the interplay
of placental development, placental buffering and fetal growth in determining birth outcomes
in the face of human malnutrition.

In summary, this study demonstrates that the growth and function of the junctional zone of
the murine placenta is affected by chronic maternal protein restriction in early gestation, and
that reduction of this layer persists throughout gestation. However, fetal and especially brain
growth are not affected until the very end of gestation. Based on these novel findings, we propose
that the junctional zone is an early sensor of maternal nutritional status and that it initiates adap-
tive endocrine changes that mitigate the impact of poor maternal nutrition on fetal growth.

Supporting Information
S1 Fig. Shape changes corresponding to the observed extremes in the positive and negative
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relative to PC1 and PC2 score moving from both negative and positive directions, lighter lines
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(PDF)
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