794 research outputs found
Break-up stage restoration in multifragmentation reactions
In the case of Xe+Sn at 32 MeV/nucleon multifragmentation reaction break-up
fragments are built-up from the experimentally detected ones using evaluations
of light particle evaporation multiplicities which thus settle fragment
internal excitation. Freeze-out characteristics are extracted from experimental
kinetic energy spectra under the assumption of full decoupling between fragment
formation and energy dissipated in different degrees of freedom. Thermal
kinetic energy is determined uniquely while for freeze-out volume - collective
energy a multiple solution is obtained. Coherence between the solutions of the
break-up restoration algorithm and the predictions of a multifragmentation
model with identical definition of primary fragments is regarded as a way to
select the true value. The broad kinetic energy spectrum of He is
consistent with break-up genesis of this isotope.Comment: 17 pages, 5 figure
Proton stopping in C+C, d+C, C+Ta and d+Ta collisions at 4.2A GeV/c
The shape of proton rapidity distributions is analysed in terms of their
Gaussian components, and the average rapidity loss is determined in order to
estimate the amount of stopping in C+C, d+C, C+Ta and d+Ta collisions at 4.2A
GeV/c. Three Gaussians correspond to the nuclear transparency and describe well
all peripheral and also C+C central collisions. Two-component shape is obtained
in case of d+C and C+Ta central collisions. Finally one Gaussian, found in d+Ta
central collisions, corresponds to the full stopping. The calculated values of
the average rapidity loss support the qualitative relationship between the
number of Gaussian components and the corresponding stopping power. It is also
observed, in central collisions, that the average rapidity loss increases with
the ratio of the number of target and the number of projectile participants.Comment: 9 pages REVTeX, 1 PS figure replaced, to be published in Phys.Rev.
Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions
Conditions under which compression occurs and collective expansion develops
in energetic reactions of heavy nuclei, are analyzed, together with their
effects on emitted light baryons and pions. Within transport simulations, it is
shown that shock fronts perpendicular to beam axis form in head-on reactions.
The fronts separate hot compressed matter from normal. As impact parameter
increases, the angle of inclination of the fronts relative to beam axis
decreases, and in-between the fronts a weak tangential discontinuity develops.
Hot matter exposed to the vacuum in directions perpendicular to shock motion
(and parallel to fronts), starts to expand sideways, early within reactions.
Expansion in the direction of shock motion follows after the shocks propagate
through nuclei, but due to the delay does not acquire same strength. Expansion
affects angular distributions, mean-energy components, shapes of spectra and
mean energies of different particles emitted into any one direction, and
further particle yields. Both the expansion and a collective motion associated
with the weak discontinuity, affect the magnitude of sideward flow within
reaction plane. Differences in mean particle energy components in and out of
the reaction plane in semicentral collisions, depend sensitively on the
relative magnitude of shock speed in normal matter and speed of sound in hot
matter.Comment: 71 pages, 33 figures (available on request), report MSUCL-94
Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper
This is the final version of the article. Available from Elsevier via the DOI in this record.Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3–5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6–8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement n°646625), the Biotechnology and Biological Sciences Research Council of the UK (BB/G023352/1), and Bayer Crop Science
On Deusons or Deuteronlike Meson-Meson Bound States
The systematics of deuteronlike two-meson bound states, {\it deusons}, is
discussed. Previous arguments that many of the present non- states are
such states are elaborated including, in particular, the tensor potential. For
pseudoscalar states the important observation is made that the centrifugal
barrier from the P-wave can be overcome by the and terms of the
tensor potential. In the heavy meson sector one-pion exchange alone is strong
enough to form at least deuteron-like and composites
bound by approximately 50 MeV, while and states are
expected near the threshold.Comment: Invited talk at the Hadron93 International Conf. on Hadron
Spectroscopy, Como, Italy 22.-25.6. 1993. 5 pages in LATEX HU-SEFT R 1993-13
Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state
We present measurements of the excitation function of elliptic flow at
midrapidity in Au+Au collisions at beam energies from 0.09 to 1.49 GeV per
nucleon. For the integral flow, we discuss the interplay between collective
expansion and spectator shadowing for three centrality classes. A complete
excitation function of transverse momentum dependence of elliptic flow is
presented for the first time in this energy range, revealing a rapid change
with incident energy below 0.4 AGeV, followed by an almost perfect scaling at
the higher energies. The equation of state of compressed nuclear matter is
addressed through comparisons to microscopic transport model calculations.Comment: 10 pages, 4 eps figures, submitted for publication. Data files will
be available at http://www.gsi.de/~fopiwww/pub
Can a Logarithmically Running Coupling Mimic a String Tension?
It is shown that a Coulomb potential using a running coupling slightly
modified from the perturbative form can produce an interquark potential that
appears nearly linear over a large distance range. Recent high-statistics SU(2)
lattice gauge theory data fit well to this potential without the need for a
linear string-tension term. This calls into question the accuracy of string
tension measurements which are based on the assumption of a constant
coefficient for the Coulomb term. It also opens up the possibility of obtaining
an effectively confining potential from gluon exchange alone.Comment: 13 pages, LaTeX, two figures not included, available from author.
revision - Line lengths fixed so it will tex properl
Flow angle from intermediate mass fragment measurements
Directed sideward flow of light charged particles and intermediate mass
fragments was measured in different symmetric reactions at bombarding energies
from 90 to 800 AMeV. The flow parameter is found to increase with the charge of
the detected fragment up to Z = 3-4 and then turns into saturation for heavier
fragments. Guided by simple simulations of an anisotropic expanding thermal
source, we show that the value at saturation can provide a good estimate of the
flow angle, , in the participant region. It is found that
depends strongly on the impact parameter. The excitation
function of reveals striking deviations from the ideal
hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a
maximum at around 250-400 AMeV, followed by a moderate decrease as the
bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.
Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV
Triple-differential cross sections for neutrons from high-multiplicity La-La
collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per
nucleon were measured at several polar angles as a function of the azimuthal
angle with respect to the reaction plane of the collision. The reaction plane
was determined by a transverse-velocity method with the capability of
identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons
was extracted from the slope at mid-rapidity of the curve of the average
in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the
participant neutrons was observed in a direction normal to the reaction plane
in the normalized momentum coordinates in the center-of-mass system.
Experimental results of the neutron squeeze-out were compared with BUU
calculations. The polar-angle dependence of the maximum azimuthal anisotropy
ratio was found to be insensitive to the mass of the colliding
nuclei and the beam energy. Comparison of the observed polar-angle dependence
of the maximum azimuthal anisotropy ratio with BUU calculations for
free neutrons revealed that is insensitive also to the
incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review
Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions
The incident energy at which the azimuthal distributions in semi-central
heavy ion collisions change from in-plane to out-of-plane enhancement, E_tran,
is studied as a function of mass of emitted particles, their transverse
momentum and centrality for Au+Au collisions. The analysis is performed in a
reference frame rotated with the sidewards flow angle, Theta_flow, relative to
the beam axis. A systematic decrease of E_tran as function of mass of the
reaction products, their transverse momentum and collision centrality is
evidenced. The predictions of a microscopic transport model (IQMD) are compared
with the experimental results.Comment: 32 pages, Latex, 22 eps figures, accepted for publication in Nucl.
Phys.
- …
