334 research outputs found
Recommended from our members
New experimental limits on the Pauli forbidden transitions in C nuclei obtained with 485 days Borexino data
The Pauli exclusion principle (PEP) has been tested for nucleons () in
with the Borexino detector.The approach consists of a search for
, , and emitted in a non-Paulian transition of
1- shell nucleons to the filled 1 shell in nuclei. Due to the
extremely low background and the large mass (278 t) of the Borexino detector,
the following most stringent up-to-date experimental bounds on PEP violating
transitions of nucleons have been established:
y, y,
y,
y and y, all at 90% C.L. The corresponding upper
limits on the relative strengths for the searched non-Paulian electromagnetic,
strong and weak transitions have been estimated: , and .Comment: 9 pages, 6 figure
New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility
The results of background measurements with the second version of the
BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso
Underground Laboratory, were used to obtain limits on the instability of
nucleons, bounded in nuclei, for decays into invisible channels ():
disappearance, decays to neutrinos, etc. The approach consisted of a search for
decays of unstable nuclides resulting from and decays of parents
C, C and O nuclei in the liquid scintillator and the water
shield of the CTF. Due to the extremely low background and the large mass (4.2
ton) of the CTF detector, the most stringent (or competitive) up-to-date
experimental bounds have been established: y, y, y and y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies
Citation: Gil-Marin, H., Percival, W. J., Brownstein, J. R., Chuang, C. H., Grieb, J. N., Ho, S., . . . Zhao, G. B. (2016). The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies. Monthly Notices of the Royal Astronomical Society, 460(4), 4188-4209. doi:10.1093/mnras/stw1096We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line of sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12. The LOWZ sample contains 361 762 galaxies with an effective redshift of z(lowz) = 0.32, and the CMASS sample 777 202 galaxies with an effective redshift of z(cmass) = 0.57. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter f times the amplitude of dark matter density fluctuations sigma 8 by modelling the redshift-space distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on f sigma(8), the product of the Hubble constant and the comoving sound horizon at the baryondrag epoch H(z) r(s)(z(d)), and the angular distance parameter divided by the sound horizon DA(z)/r(s)(zd). We find f(z(lowz)) sigma(8)(z(lowz)) = 0.394 +/- 0.062, D-A(zlowz)/r(s)(z(d)) = 6.35 +/- 0.19, H(z(lowz)) r(s)(z(d)) = (11.41 +/- 0.56) 103 km s(-1) for the LOWZ sample, and f( z(cmass)) sigma 8(z(cmass)) = 0.444 +/- 0.038, D-A(z(cmass))/r(s)(z(d)) = 9.42 +/- 0.15, H(z(cmass)) r(s)(z(d)) = (13.92 +/- 0.44) 103 km s-1 for the CMASS sample. We find general agreement with previous BOSS DR11 measurements. Assuming the Hubble parameter and angular distance parameter are fixed at fiducial +/- cold dark matter values, we find f( zlowz) sigma(8)( z(lowz))= 0.485 +/- 0.044 and f(z(cmass)) sigma(8)(z(cmass))= 0.436 +/- 0.022 for the LOWZ and CMASS samples, respectively
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the Fourier space wedges of the final sample
Citation: Grieb, J. N., Sanchez, A. G., Salazar-Albornoz, S., Scoccimarro, R., Crocce, M., Dalla Vecchia, C., . . . Zhao, G. B. (2017). The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the Fourier space wedges of the final sample. Monthly Notices of the Royal Astronomical Society, 467(2), 2085-2112. doi:10.1093/mnras/stw3384We extract cosmological information from the anisotropic power-spectrummeasurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Lambda cold dark matter (Lambda CDM) cosmology, we constrain the matter density to Omega M = 0.311(-0.010)(+ 0.009) and the Hubble parameter to H-0 = 67.6(-0.6)(+0.7) km s(-1) Mpc(-1), at a confidence level of 68 per cent. We also allow for nonstandard dark energy models and modifications of the growth rate, finding good agreement with the Lambda CDM paradigm. For example, we constrain the equation-of-state parameter to omega =-1.019(-0.039)(+0.048) . This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS
Pulse-Shape discrimination with the Counting Test Facility
Pulse shape discrimination (PSD) is one of the most distinctive features of
liquid scintillators. Since the introduction of the scintillation techniques in
the field of particle detection, many studies have been carried out to
characterize intrinsic properties of the most common liquid scintillator
mixtures in this respect. Several application methods and algorithms able to
achieve optimum discrimination performances have been developed. However, the
vast majority of these studies have been performed on samples of small
dimensions. The Counting Test Facility, prototype of the solar neutrino
experiment Borexino, as a 4 ton spherical scintillation detector immersed in
1000 tons of shielding water, represents a unique opportunity to extend the
small-sample PSD studies to a large-volume setup. Specifically, in this work we
consider two different liquid scintillation mixtures employed in CTF,
illustrating for both the PSD characterization results obtained either with the
processing of the scintillation waveform through the optimum Gatti's method, or
via a more conventional approach based on the charge content of the
scintillation tail. The outcomes of this study, while interesting per se, are
also of paramount importance in view of the expected Borexino detector
performances, where PSD will be an essential tool in the framework of the
background rejection strategy needed to achieve the required sensitivity to the
solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.
The Borexino detector at the Laboratori Nazionali del Gran Sasso
Borexino, a large volume detector for low energy neutrino spectroscopy, is
currently running underground at the Laboratori Nazionali del Gran Sasso,
Italy. The main goal of the experiment is the real-time measurement of sub MeV
solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron
capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid
scintillator. This paper is mostly devoted to the description of the detector
structure, the photomultipliers, the electronics, and the trigger and
calibration systems. The real performance of the detector, which always meets,
and sometimes exceeds, design expectations, is also shown. Some important
aspects of the Borexino project, i.e. the fluid handling plants, the
purification techniques and the filling procedures, are not covered in this
paper and are, or will be, published elsewhere (see Introduction and
Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI
New results on solar neutrino fluxes from 192 days of Borexino data
We report the direct measurement of the ^7Be solar neutrino signal rate
performed with the Borexino detector at the Laboratori Nazionali del Gran
Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is
49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation
for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma
level. Our result is the first direct measurement of the survival probability
for solar nu_e in the transition region between matter-enhanced and
vacuum-driven oscillations. The measurement improves the experimental
determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the
magnetic moment of neutrinos
Testing the predictability and efficiency of securitized real estate markets
This paper conducts tests of the random walk hypothesis and market efficiency for 14 national public real estate markets. Random walk properties of equity prices influence the return dynamics and determine the trading strategies of investors. To examine the stochastic properties of local real estate index returns and to test the hypothesis that public real estate stock prices follow a random walk, the single variance ratio tests of Lo and MacKinlay (1988) as well as the multiple variance ratio test of Chow and Denning (1993) are employed. Weak-form market efficiency is tested directly using non-parametric runs tests. Empirical evidence shows that weekly stock prices in major securitized real estate markets do not follow a random walk. The empirical findings of return predictability suggest that investors might be able to develop trading strategies allowing them to earn excess returns compared to a buy-and-hold strategy
Short Baseline Neutrino Oscillation Experiments
8 pages, 1 figure, presented at "NuPhys2013 - prospects in neutrino physics", Institute of Physics, London, UK, Dec. 19-20, 201
- …
