1,612 research outputs found

    Investigation of test methods, material properties, and processes for solar cell encapsulants

    Get PDF
    The development of pottant compounds is emphasized. Formulation of the butyl acrylate syrup/casting pottant was completed. The formulation contains an ultraviolet stabilizer system and may be cured with an initiator that, unlike former selections, presents no shipping of handling hazards to the user. The catalyzed syrup is stable at room temperature and has a pot life of at least eight hours. The formulation of the ethylene/methyl acrylate lamination pottant was also completed. This compound is the alternative pottant to EVA and is similarly produced as an extruded sheet that is wound into rolls. This resin is inherently nonblocking

    Congenital diarrhoeal disorders: advances in this evolving web of inherited enteropathies.

    Get PDF
    Congenital diarrhoeal disorders (CDDs) represent an evolving web of rare chronic enteropathies, with a typical onset early in life. In many of these conditions, severe chronic diarrhoea represents the primary clinical manifestation, whereas in others diarrhoea is only a component of a more complex multi-organ or systemic disorder. Typically, within the first days of life, diarrhoea leads to a life-threatening condition highlighted by severe dehydration and serum electrolyte abnormalities. Thus, in the vast majority of cases appropriate therapy must be started immediately to prevent dehydration and long-term, sometimes severe, complications. The number of well-characterized disorders attributed to CDDs has gradually increased over the past several years, and many new genes have been identified and functionally related to CDDs, opening new diagnostic and therapeutic perspectives. Molecular analysis has changed the diagnostic scenario in CDDs, and led to a reduction in invasive and expensive procedures. Major advances have been made in terms of pathogenesis, enabling a better understanding not only of these rare conditions but also of more common diseases mechanisms

    An Assessment to Benchmark the Seismic Performance of a Code-Conforming Reinforced-Concrete Moment-Frame Building

    Get PDF
    This report describes a state-of-the-art performance-based earthquake engineering methodology that is used to assess the seismic performance of a four-story reinforced concrete (RC) office building that is generally representative of low-rise office buildings constructed in highly seismic regions of California. This “benchmark” building is considered to be located at a site in the Los Angeles basin, and it was designed with a ductile RC special moment-resisting frame as its seismic lateral system that was designed according to modern building codes and standards. The building’s performance is quantified in terms of structural behavior up to collapse, structural and nonstructural damage and associated repair costs, and the risk of fatalities and their associated economic costs. To account for different building configurations that may be designed in practice to meet requirements of building size and use, eight structural design alternatives are used in the performance assessments. Our performance assessments account for important sources of uncertainty in the ground motion hazard, the structural response, structural and nonstructural damage, repair costs, and life-safety risk. The ground motion hazard characterization employs a site-specific probabilistic seismic hazard analysis and the evaluation of controlling seismic sources (through disaggregation) at seven ground motion levels (encompassing return periods ranging from 7 to 2475 years). Innovative procedures for ground motion selection and scaling are used to develop acceleration time history suites corresponding to each of the seven ground motion levels. Structural modeling utilizes both “fiber” models and “plastic hinge” models. Structural modeling uncertainties are investigated through comparison of these two modeling approaches, and through variations in structural component modeling parameters (stiffness, deformation capacity, degradation, etc.). Structural and nonstructural damage (fragility) models are based on a combination of test data, observations from post-earthquake reconnaissance, and expert opinion. Structural damage and repair costs are modeled for the RC beams, columns, and slabcolumn connections. Damage and associated repair costs are considered for some nonstructural building components, including wallboard partitions, interior paint, exterior glazing, ceilings, sprinkler systems, and elevators. The risk of casualties and the associated economic costs are evaluated based on the risk of structural collapse, combined with recent models on earthquake fatalities in collapsed buildings and accepted economic modeling guidelines for the value of human life in loss and cost-benefit studies. The principal results of this work pertain to the building collapse risk, damage and repair cost, and life-safety risk. These are discussed successively as follows. When accounting for uncertainties in structural modeling and record-to-record variability (i.e., conditional on a specified ground shaking intensity), the structural collapse probabilities of the various designs range from 2% to 7% for earthquake ground motions that have a 2% probability of exceedance in 50 years (2475 years return period). When integrated with the ground motion hazard for the southern California site, the collapse probabilities result in mean annual frequencies of collapse in the range of [0.4 to 1.4]x10 -4 for the various benchmark building designs. In the development of these results, we made the following observations that are expected to be broadly applicable: (1) The ground motions selected for performance simulations must consider spectral shape (e.g., through use of the epsilon parameter) and should appropriately account for correlations between motions in both horizontal directions; (2) Lower-bound component models, which are commonly used in performance-based assessment procedures such as FEMA 356, can significantly bias collapse analysis results; it is more appropriate to use median component behavior, including all aspects of the component model (strength, stiffness, deformation capacity, cyclic deterioration, etc.); (3) Structural modeling uncertainties related to component deformation capacity and post-peak degrading stiffness can impact the variability of calculated collapse probabilities and mean annual rates to a similar degree as record-to-record variability of ground motions. Therefore, including the effects of such structural modeling uncertainties significantly increases the mean annual collapse rates. We found this increase to be roughly four to eight times relative to rates evaluated for the median structural model; (4) Nonlinear response analyses revealed at least six distinct collapse mechanisms, the most common of which was a story mechanism in the third story (differing from the multi-story mechanism predicted by nonlinear static pushover analysis); (5) Soil-foundation-structure interaction effects did not significantly affect the structural response, which was expected given the relatively flexible superstructure and stiff soils. The potential for financial loss is considerable. Overall, the calculated expected annual losses (EAL) are in the range of 52,000to52,000 to 97,000 for the various code-conforming benchmark building designs, or roughly 1% of the replacement cost of the building (8.8M).Theselossesaredominatedbytheexpectedrepaircostsofthewallboardpartitions(includinginteriorpaint)andbythestructuralmembers.Lossestimatesaresensitivetodetailsofthestructuralmodels,especiallytheinitialstiffnessofthestructuralelements.Lossesarealsofoundtobesensitivetostructuralmodelingchoices,suchasignoringthetensilestrengthoftheconcrete(40EAL)orthecontributionofthegravityframestooverallbuildingstiffnessandstrength(15changeinEAL).Althoughthereareanumberoffactorsidentifiedintheliteratureaslikelytoaffecttheriskofhumaninjuryduringseismicevents,thecasualtymodelinginthisstudyfocusesonthosefactors(buildingcollapse,buildingoccupancy,andspatiallocationofbuildingoccupants)thatdirectlyinformthebuildingdesignprocess.Theexpectedannualnumberoffatalitiesiscalculatedforthebenchmarkbuilding,assumingthatanearthquakecanoccuratanytimeofanydaywithequalprobabilityandusingfatalityprobabilitiesconditionedonstructuralcollapseandbasedonempiricaldata.Theexpectedannualnumberoffatalitiesforthecodeconformingbuildingsrangesbetween0.05102and0.21102,andisequalto2.30102foranoncodeconformingdesign.Theexpectedlossoflifeduringaseismiceventisperhapsthedecisionvariablethatownersandpolicymakerswillbemostinterestedinmitigating.Thefatalityestimationcarriedoutforthebenchmarkbuildingprovidesamethodologyforcomparingthisimportantvalueforvariousbuildingdesigns,andenablesinformeddecisionmakingduringthedesignprocess.Theexpectedannuallossassociatedwithfatalitiescausedbybuildingearthquakedamageisestimatedbyconvertingtheexpectedannualnumberoffatalitiesintoeconomicterms.Assumingthevalueofahumanlifeis8.8M). These losses are dominated by the expected repair costs of the wallboard partitions (including interior paint) and by the structural members. Loss estimates are sensitive to details of the structural models, especially the initial stiffness of the structural elements. Losses are also found to be sensitive to structural modeling choices, such as ignoring the tensile strength of the concrete (40% change in EAL) or the contribution of the gravity frames to overall building stiffness and strength (15% change in EAL). Although there are a number of factors identified in the literature as likely to affect the risk of human injury during seismic events, the casualty modeling in this study focuses on those factors (building collapse, building occupancy, and spatial location of building occupants) that directly inform the building design process. The expected annual number of fatalities is calculated for the benchmark building, assuming that an earthquake can occur at any time of any day with equal probability and using fatality probabilities conditioned on structural collapse and based on empirical data. The expected annual number of fatalities for the code-conforming buildings ranges between 0.05*10 -2 and 0.21*10 -2 , and is equal to 2.30*10 -2 for a non-code conforming design. The expected loss of life during a seismic event is perhaps the decision variable that owners and policy makers will be most interested in mitigating. The fatality estimation carried out for the benchmark building provides a methodology for comparing this important value for various building designs, and enables informed decision making during the design process. The expected annual loss associated with fatalities caused by building earthquake damage is estimated by converting the expected annual number of fatalities into economic terms. Assuming the value of a human life is 3.5M, the fatality rate translates to an EAL due to fatalities of 3,500to3,500 to 5,600 for the code-conforming designs, and 79,800forthenoncodeconformingdesign.ComparedtotheEALduetorepaircostsofthecodeconformingdesigns,whichareontheorderof79,800 for the non-code conforming design. Compared to the EAL due to repair costs of the code-conforming designs, which are on the order of 66,000, the monetary value associated with life loss is small, suggesting that the governing factor in this respect will be the maximum permissible life-safety risk deemed by the public (or its representative government) to be appropriate for buildings. Although the focus of this report is on one specific building, it can be used as a reference for other types of structures. This report is organized in such a way that the individual core chapters (4, 5, and 6) can be read independently. Chapter 1 provides background on the performance-based earthquake engineering (PBEE) approach. Chapter 2 presents the implementation of the PBEE methodology of the PEER framework, as applied to the benchmark building. Chapter 3 sets the stage for the choices of location and basic structural design. The subsequent core chapters focus on the hazard analysis (Chapter 4), the structural analysis (Chapter 5), and the damage and loss analyses (Chapter 6). Although the report is self-contained, readers interested in additional details can find them in the appendices

    Nutrition Strategies for Triathlon

    Get PDF
    Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness

    An intervention study to prevent relapse in patients with schizophrenia

    Get PDF
    Purpose: To determine whether the use of relapse prevention plans (RPPs) in nursing practice is an effective intervention in reducing relapse rates among patients with schizophrenia. Design and Methods: Experimental design. Patients with schizophrenia (or a related psychotic disorder) and nurses from three mental health organizations were randomly assigned to either an experimental (RPP) or control condition (care as usual). The primary outcome measure was the psychotic relapses in the research groups. Results: The relapse rates in the experimental and control groups after 1-year follow-up were 12.5% and 26.2%, respectively (p=.12, ns). The relative risk of a relapse in the experimental versus the control group was 0.48(ns). Conclusions: In this study no statistically significant effects of the intervention were found. Effectiveness research in this area should be continued with larger sample sizes and longer follow-up periods

    Pathways to emotional closeness in neonatal units – a cross-national qualitative study

    Get PDF
    Background: Research shows evidence for the importance of physical and emotional closeness for the infant, the parent and the infant-parent dyad. Less is known about how, when and why parents experience emotional closeness to their infants in a neonatal unit (NU), which was the aim of this study. Methods: A qualitative study using a salutogenic approach to focus on positive health and wellbeing was undertaken in three NUs: one in Sweden, England and Finland. An ‘emotional closeness’ form was devised, which asked parents to describe moments/situations when, how and why they had felt emotionally close to their infant. Data for 23 parents of preterm infants were analyzed using thematic networks analysis. Results: A global theme of ‘pathways for emotional closeness’ emerged from the data set. This concept related to how emotional, physical, cognitive and social influences led to feelings of emotional closeness between parents and their infants. The five underpinning organising themes relate to the: Embodied recognition through the power of physical closeness; Reassurance of, and contributing to, infant wellness; Understanding the present and the past; Feeling engaged in the day to day and Spending time and bonding as a family. Conclusion: These findings generate important insights into why, how and when parents feel emotionally close. This knowledge contributes to an increased awareness of how to support parents of premature infants to form positive and loving relationships with their infants. Health care staff should create a climate where parents’ emotions and their emotional journey are individually supported

    Trauma ICU Prevalence Project: the diversity of surgical critical care.

    Get PDF
    Background:Surgical critical care is crucial to the care of trauma and surgical patients. This study was designed to provide a contemporary assessment of patient types, injuries, and conditions in intensive care units (ICU) caring for trauma patients. Methods:This was a multicenter prevalence study of the American Association for the Surgery of Trauma; data were collected on all patients present in participating centers' trauma ICU (TICU) on November 2, 2017 and April 10, 2018. Results:Forty-nine centers submitted data on 1416 patients. Median age was 58 years (IQR 41-70). Patient types included trauma (n=665, 46.9%), non-trauma surgical (n=536, 37.8%), medical (n=204, 14.4% overall), or unspecified (n=11). Surgical intensivists managed 73.1% of patients. Of ICU-specific diagnoses, 57% were pulmonary related. Multiple high-intensity diagnoses were represented (septic shock, 10.2%; multiple organ failure, 5.58%; adult respiratory distress syndrome, 4.38%). Hemorrhagic shock was seen in 11.6% of trauma patients and 6.55% of all patients. The most common traumatic injuries were rib fractures (41.6%), brain (38.8%), hemothorax/pneumothorax (30.8%), and facial fractures (23.7%). Forty-four percent were on mechanical ventilation, and 17.6% had a tracheostomy. One-third (33%) had an infection, and over half (54.3%) were on antibiotics. Operations were performed in 70.2%, with 23.7% having abdominal surgery. At 30 days, 5.4% were still in the ICU. Median ICU length of stay was 9 days (IQR 4-20). 30-day mortality was 11.2%. Conclusions:Patient acuity in TICUs in the USA is very high, as is the breadth of pathology and the interventions provided. Non-trauma patients constitute a significant proportion of TICU care. Further assessment of the global predictors of outcome is needed to inform the education, research, clinical practice, and staffing of surgical critical care providers. Level of evidence:IV, prospective observational study
    corecore