297 research outputs found
Modification of amorphous and microcrystalline silicon film properties after irradiation with MeV and GeV protons
It is well known that the degree of crystallinity has a prominent influence on the stability of Silicon under proton irradiation. Amorphous silicon films are much more stable than mono- or polycrystalline silicon substrates or microcrystalline silicon thin films. In particular it has been shown, that in a micromorph tandem solar cell irradiated with protons in the lower MeV energy range only the microcrystalline diode showed a pronounced decrease in photocurrent after
irradiation1. The proton irradiation induced damage in thick crystalline silicon samples has a maximum at beam energies between 1MeV and 4MeV and decreases for further increasing proton energies. However, irradiating an amorphous silicon/crystalline silicon heterojunction solar cell with a relatively dose of 24GeV, we observed a very strong drop in conversion efficiency with only minor recovery after sample annealing. In literature it has been reported 2,
that the degradation of amorphous silicon is negligible for proton energies above 100MeV. In order to clarify to which extent also the thin film top layer of the hetero solar cell is affected by the proton irradiation, we exposed a variety of thin film silicon samples either to a 1.7MeV beam with a dose of 5.1012 protons/cm2 or to a 24GeV beam with a dose of 5 .1013 protons/cm2. The investigated intrinsic, p-type and n-type amorphous and microcrystalline silicon films have been deposited by conventional plasma deposition under variation of the silane / hydrogen gas phase ratio. Raman measurements have been done in order to determine the order of crystallinity obtained under various deposition conditions. We observed even at 24GeV a clear modification in the electrical characteristics of the films. Temperature dependent measurements of the dark current revealed in particular for all doped samples a significant increase of the activation energy, that might be explained by a decrease of the dopant efficiency, while for intrinsic a-Si:H layers the increasing activation energy is due to deep defect creation
Solar fusion cross sections. II. The pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
Solar fusion cross sections II: the pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
Late Permian magnetostratigraphy on the eastern Russian platform
The Late Permian is characterized palaeomagnetically by the transition from the long-lasting Permo-Carboniferous reversed polarity superchron (PCRS; also called: Kiaman reversed superchron) to the subsequent Permo-Triassic mixed polarity superchron, often called Illawarra mixed polarity superchron. Many discussions have been devoted to the exact time of the onset of the Illawarra reversals. Apparently contradictory data have been obtained from magnetostratigraphic sediment successions formed in different environments in many regions of the world. These sediments have been dated using classical geological or palaeontological correlation methods without the possibility of absolute age control because volcanogenic materials are missing. Application of the local or regional stratigraphic schemes leads to difficulties and apparent diachronous age estimates of the end of the PCRS. This paper shows that in agreement with earlier investigations, the continental red beds of the Upper Permian Tatarian stage on the eastern Russian platform record the Kiaman/Illawarra boundary. The Illawarra reversal sequence measured in a type section at the Volga river can be correlated well with the corresponding polarity pattern found in the Tethyan realm if one assumes a longer duration of the Tatarian than previously suggested
7Be(p,gamma)8B astrophysical S-factor from precision cross section measurements
We measured the 7Be(p,gamma)8B cross section from E_cm = 186 to 1200 keV,
with a statistical-plus-systematic precision per point of better than +- 5%.
All important systematic errors were measured including 8B backscattering
losses. We obtain S_17(0) = 22.3 +- 0.7(expt) +- 0.5(theor) eV-b from our data
at E_cm <= 300 keV and the theory of Descouvemont and Baye.Comment: 4 pages, 4 figure
The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production
The KM3NeT Collaboration is building an underwater neutrino observatory at
the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both
composed of a three-dimensional array of light detectors, known as digital
optical modules. Each digital optical module contains a set of 31 three inch
photomultiplier tubes distributed over the surface of a 0.44 m diameter
pressure-resistant glass sphere. The module includes also calibration
instruments and electronics for power, readout and data acquisition. The power
board was developed to supply power to all the elements of the digital optical
module. The design of the power board began in 2013, and several prototypes
were produced and tested. After an exhaustive validation process in various
laboratories within the KM3NeT Collaboration, a mass production batch began,
resulting in the construction of over 1200 power boards so far. These boards
were integrated in the digital optical modules that have already been produced
and deployed, 828 until October 2023. In 2017, an upgrade of the power board,
to increase reliability and efficiency, was initiated. After the validation of
a pre-production series, a production batch of 800 upgraded boards is currently
underway. This paper describes the design, architecture, upgrade, validation,
and production of the power board, including the reliability studies and tests
conducted to ensure the safe operation at the bottom of the Mediterranean Sea
throughout the observatory's lifespa
Embedded Software of the KM3NeT Central Logic Board
The KM3NeT Collaboration is building and operating two deep sea neutrino
telescopes at the bottom of the Mediterranean Sea. The telescopes consist of
latices of photomultiplier tubes housed in pressure-resistant glass spheres,
called digital optical modules and arranged in vertical detection units. The
two main scientific goals are the determination of the neutrino mass ordering
and the discovery and observation of high-energy neutrino sources in the
Universe. Neutrinos are detected via the Cherenkov light, which is induced by
charged particles originated in neutrino interactions. The photomultiplier
tubes convert the Cherenkov light into electrical signals that are acquired and
timestamped by the acquisition electronics. Each optical module houses the
acquisition electronics for collecting and timestamping the photomultiplier
signals with one nanosecond accuracy. Once finished, the two telescopes will
have installed more than six thousand optical acquisition nodes, completing one
of the more complex networks in the world in terms of operation and
synchronization. The embedded software running in the acquisition nodes has
been designed to provide a framework that will operate with different hardware
versions and functionalities. The hardware will not be accessible once in
operation, which complicates the embedded software architecture. The embedded
software provides a set of tools to facilitate remote manageability of the
deployed hardware, including safe reconfiguration of the firmware. This paper
presents the architecture and the techniques, methods and implementation of the
embedded software running in the acquisition nodes of the KM3NeT neutrino
telescopes
Prospects for combined analyses of hadronic emission from -ray sources in the Milky Way with CTA and KM3NeT
The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major
upcoming facilities in the fields of -ray and neutrino astronomy,
respectively. Possible simultaneous production of rays and neutrinos
in astrophysical accelerators of cosmic-ray nuclei motivates a combination of
their data. We assess the potential of a combined analysis of CTA and KM3NeT
data to determine the contribution of hadronic emission processes in known
Galactic -ray emitters, comparing this result to the cases of two
separate analyses. In doing so, we demonstrate the capability of Gammapy, an
open-source software package for the analysis of -ray data, to also
process data from neutrino telescopes. For a selection of prototypical
-ray sources within our Galaxy, we obtain models for primary proton and
electron spectra in the hadronic and leptonic emission scenario, respectively,
by fitting published -ray spectra. Using these models and instrument
response functions for both detectors, we employ the Gammapy package to
generate pseudo data sets, where we assume 200 hours of CTA observations and 10
years of KM3NeT detector operation. We then apply a three-dimensional binned
likelihood analysis to these data sets, separately for each instrument and
jointly for both. We find that the largest benefit of the combined analysis
lies in the possibility of a consistent modelling of the -ray and
neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for
the most favourable source, an average expected 68% credible interval that
constrains the contribution of hadronic processes to the observed -ray
emission to below 15%.Comment: 18 pages, 15 figures. Submitted to journa
Probing invisible neutrino decay with KM3NeT-ORCA
In the era of precision measurements of the neutrino oscillation parameters,
upcoming neutrino experiments will also be sensitive to physics beyond the
Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring
atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the
sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A
three-flavour neutrino oscillation scenario, where the third neutrino mass
state decays into an invisible state, e.g. a sterile neutrino, is
considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino
decays with ~ at confidence
level, assuming true normal ordering. Finally, the impact of neutrino decay on
the precision of KM3NeT/ORCA measurements for ,
and mass ordering have been studied. No significant effect of neutrino decay on
the sensitivity to these measurements has been found.Comment: 27 pages, 14 figures, bibliography updated, typos correcte
- …