28 research outputs found

    Overexpression. of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato

    Full text link
    [EN] One strategy to increase the level of drought and salinity tolerance is the transfer of genes codifying different types of proteins functionally related to macromolecules protection, such as group 2 of late embryogenesis abundant (LEA) proteins or dehydrins. The TAS14 dehydrin was isolated and characterized in tomato and its expression was induced by osmotic stress (NaCl and mannitol) and abscisic acid (ABA) [Godoy et al., Plant Mol Biol 1994;26:1921-1934], yet its function in drought and salinity tolerance of tomato remains elusive. In this study, transgenic tomato plants overexpressing tas14 gene under the control of the 35SCaMV promoter were generated to assess the function of tas14 gene in drought and salinity tolerance. The plants overexpressing tas14 gene achieved improved long-term drought and salinity tolerance without affecting plant growth under non-stress conditions. A mechanism of osmotic stress tolerance via osmotic potential reduction and solutes accumulation, such as sugars and K+ is operating in tas14 overexpressing plants in drought conditions. A similar mechanism of osmotic stress tolerance was observed under salinity. Moreover, the overexpression of tas14 gene increased Na+ accumulation only in adult leaves, whereas in young leaves, the accumulated solutes were K+ and sugars, suggesting that plants overexpressing tas14 gene are able to distribute the Na+ accumulation between young and adult leaves over a prolonged period in stressful conditions. Measurement of ABA showed that the action mechanism of tas14 gene is associated with an earlier and greater accumulation of ABA in leaves during short-term periods. A good feature for the application of this gene in improving drought and salt stress tolerance is the fact that its constitutive expression does not affect plant growth under non-stress conditions, and tolerance induced by overexpression of tas14 gene was observed at the different stress degrees applied to the long term. (C) 2011 Elsevier GmbH. All rights reserved.This work was supported by the Spanish Ministry of Science and Innovation through grant AGL2009-13388-C03 and by the Council of Science and Technology from the Region of Murcia (Spain) (Fundacion SENECA) through grant 04553/GERM/06.Muñoz Mayor, A.; Pineda Chaza, BJ.; García Abellán, JO.; Antón Martínez, MT.; García Sogo, B.; Sánchez Bel, P.; Flores, FB.... (2012). Overexpression. of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. Journal of Plant Physiology. 169(5):459-468. https://doi.org/10.1016/j.jplph.2011.11.018S459468169

    Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals.

    Get PDF
    Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling. [Abstract copyright: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

    Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals

    No full text
    Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling.This work was supported by the Ministry of Economy, Industry and Competitiveness (CGL2017-83802-P to A.R.-H.) and the Spanish Ministry of Science and Innovation (PID2020-112557GB-I00 to A.R.-H. and PID2020-115696RB-I00 to M.A.M.-R.). Research funding to P.D.W. (Australian Research Council grants DP180100931, DP210103512, and DP220101429) and T.J.R. (South African National Research Foundation) are gratefully acknowledged. C.V. and L.A.-G. were supported by FPI predoctoral fellowships from the Ministry of Economy and Competitiveness (BES-2015-072924 and PRE-2018-083257). L.M.-G. was supported by an FPU predoctoral fellowship from the Spanish Ministry of Science, Innovation and University (FPU18/03867). C.A.-S. was supported by a GTA fellowship from the University of Kent

    The impact of chromosomal fusions on 3D genome folding and recombination in the germ line

    Get PDF
    The spatial folding of chromosomes inside the nucleus has regulatory effects on gene expression, yet the impact of genome reshuffling on this organization remains unclear. Here, we take advantage of chromosome conformation capture in combination with single-nucleotide polymorphism (SNP) genotyping and analysis of crossover events to study how the higher-order chromatin organization and recombination landscapes are affected by chromosomal fusions in the mammalian germ line. We demonstrate that chromosomal fusions alter the nuclear architecture during meiosis, including an increased rate of heterologous interactions in primary spermatocytes, and alterations in both chromosome synapsis and axis length. These disturbances in topology were associated with changes in genomic landscapes of recombination, resulting in detectable genomic footprints. Overall, we show that chromosomal fusions impact the dynamic genome topology of germ cells in two ways: (i) altering chromosomal nuclear occupancy and synapsis, and (ii) reshaping landscapes of recombination.This work was supported by the Ministry of Economy and Competitiveness (CGL2014-54317-P and CGL2017-83802-P to A.R.-H., BFU2013-47736-P and BFU2017-85926-P to M.A.M.-R. and CGL2010-15243 to J.V.) and the Agència de Gestió d’Ajuts Universitaris i de Recerca, AGAUR (DI2015 and SGR1215 to A.R-H. as well as SGR468 to M.A.M.-R.). C.V. and L.A.-G. were supported by FPI predoctoral fellowships from the Ministry of Economy and Competitiveness (BES-2015-072924 and PRE-2018-083257). L.M.-G. was supported by an FPU predoctoral fellowships from the Ministry of Science, Innovation and University (FPU18/03867). M.A.M.-R. acknowledges support by the European Research Council under the 7th Framework Program FP7/2007-2013 (ERC grant agreement 609989) and the European Union’s Horizon 2020 research and innovation program (grant agreement 676556). A.R.-H. also acknowledges support from MeioNet (BFU2015-71786-REDT)

    Urinary parameters of Trichechus inunguis (Mammalia, Sirenia): reference values for the Amazonian Manatee

    No full text
    The Amazonian manatee, Trichechus inunguis (Natterer 1883) is endemic to the Amazon Basin and is currently considered a vulnerable species. In order to establish normality ranges of urinary parameters to help monitor the health of this species in captivity, chemical urinalyses were performed on twelve males and nine females of various age groups. Urine was collected once a month for twelve months in the tanks just after being drained, by placing stainless steel containers under the genital slit of females and applying abdominal massages to males in order to stimulate urination. Quantitative data of glucose, urea, creatinine, uric acid and amylase levels were obtained using colorimetric spectrophotometry. Dip strips were also useful for routine analyses, despite only providing qualitative results. Normal range to glucose levels, regardless of sex or age class, was 3.0 to 3.6 mg.dL-1, coinciding with qualitative values of glucose measured by dip strips. Statistical differences observed in some parameter levels suggest that some urine parameters analysed must take into consideration the sex and the age class of the animal studied, being these differences less remarkable in creatinine and amylase levels. To this last one, statistical difference was detected only in the calve's urine (7.0 to 11.5 mg.dL-1) compared to other age classes samples (4.1 to 5.3 mg.dL-1). The results presented here may be used as comparative data in future research on urinalysis in related species

    Analysis of the contribution of <it>FTO</it>, <it>NPC1, ENPP1, NEGR1, GNPDA2</it> and <it>MC4R</it> genes to obesity in Mexican children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent genome wide association studies (GWAS) and previous positional linkage studies have identified more than 50 single nucleotide polymorphisms (SNPs) associated with obesity, mostly in Europeans. We aimed to assess the contribution of some of these SNPs to obesity risk and to the variation of related metabolic traits, in Mexican children.</p> <p>Methods</p> <p>The association of six European obesity-related SNPs in or near <it>FTO, NPC1, ENPP1, NEGR1, GNPDA2</it> and <it>MC4R</it> genes with risk of obesity was tested in 1,463 school-aged Mexican children (<it>N</it><sub><it>cases</it></sub> = 514; <it>N</it><sub><it>controls</it></sub> = 949). We also assessed effects of these SNPs on the variation of body mass index (BMI), fasting serum insulin levels, fasting plasma glucose levels, total cholesterol and triglyceride levels, in a subset of 1,171 nonobese Mexican children.</p> <p>Results</p> <p>We found a significant effect of <it>GNPDA2</it> rs10938397 on risk of obesity (odds ratio [OR] = 1.30; <it>P</it> = 1.34 × 10<sup>-3</sup>). Furthermore, we found nominal associations between obesity risk or BMI variation and the following SNPs: <it>ENPP1</it> rs7754561, <it>MC4R</it> rs17782313 and <it>NEGR1</it> rs2815752. Importantly, the at-risk alleles of both <it>MC4R</it> rs17782313 and <it>NPC1</it> rs1805081 showed significant effect on increased fasting glucose levels (β = 0.36 mmol/L; <it>P</it> = 1.47 × 10<sup>-3</sup>) and decreased fasting serum insulin levels (β = −0.10 μU/mL; <it>P</it> = 1.21 × 10<sup>-3</sup>), respectively.</p> <p>Conclusion</p> <p>Our present results suggest that some obesity-associated SNPs previously reported in Europeans also associate with risk of obesity, or metabolic quantitative traits, in Mexican children. Importantly, we found new associations between <it>MC4R</it> and fasting glucose levels, and between <it>NPC1</it> and fasting insulin levels.</p
    corecore