44 research outputs found
On the external forcing of global eruptive activity in the past 300 years
The decryption of the temporal sequence of volcanic eruptions is a key step
in better anticipating future events. Volcanic activity is the result of a
complex interaction between internal and external processes, with time scales
spanning multiple orders of magnitude. We review periodicities that have been
detected or correlated with volcanic eruptions/phenomena and interpreted as
resulting from external forces. Taking a global perspective and longer time
scales than a few years, we approach this interaction by analyzing three time
series using singular spectral analysis: the global number of volcanic
eruptions (NVE) between 1700 and 2022, the number of sunspots (ISSN), a proxy
for solar activity, the polar motion (PM) and length of day (lod), two proxies
for gravitational force. Several pseudo-periodicities are common to NVE and
ISSN, in addition to the 11-year Schwabe cycle that has been reported in
previous work, but NVE shares even more periodicities with PM. These
quasi-periodic components range from ~5 to ~130 years. We interpret our
analytical results in light of the Laplace's paradigm and propose that,
similarly to the movement of Earth's rotation axis, global eruptive activity is
modulated by commensurable orbital moments of the Jovian planets, whose
influence is also detected in solar activity
Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells
MeMoVolc report on classification and dynamics of volcanic explosive eruptions
Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance
Relations entre volcans et plutons dans la Montagne Noire, les Causses et le Bas-Languedoc (Sud de la France)
Classification et culture des Sorghos.
Gèze J.-B. Classification et culture des Sorghos.. In: Revue de botanique appliquée et d'agriculture coloniale, 3ᵉ année, bulletin n°26, octobre 1923. pp. 666-681
Utilisation des Typha en France
Gèze J.-B. Utilisation des Typha en France. In: Revue de botanique appliquée et d'agriculture coloniale, 2ᵉ année, bulletin n°14, octobre 1922. pp. 551-557
