659 research outputs found
Disorder induced Coulomb gaps in graphene constrictions with different aspect ratios
We present electron transport measurements on lithographically defined and
etched graphene nanoconstrictions with different aspect ratios including
different lengths (L) and widths (W). A roughly length-independent disorder
induced effective energy gap can be observed around the charge neutrality
point. This energy gap scales inversely with the width even in regimes where
the length of the constriction is smaller than its width (L<W). In very short
constrictions, we observe both resonances due to localized states or charged
islands and an elevated overall conductance level (0.1-1e2/h), which is
strongly length-dependent in the gap region. This makes very short graphene
constrictions interesting for highly transparent graphene tunneling barriers.Comment: 4 pages, 4 figure
Transport in coupled graphene-nanotube quantum devices
We report on the fabrication and characterization of all-carbon hybrid
quantum devices based on graphene and single-walled carbon nanotubes. We
discuss both, carbon nanotube quantum dot devices with graphene charge
detectors and nanotube quantum dots with graphene leads. The devices are
fabricated by chemical vapor deposition growth of carbon nanotubes and
subsequent structuring of mechanically exfoliated graphene. We study the
detection of individual charging events in the carbon nanotube quantum dot by a
nearby graphene nanoribbon and show that they lead to changes of up to 20% of
the conductance maxima in the graphene nanoribbon acting as a good performing
charge detector. Moreover, we discuss an electrically coupled graphene-nanotube
junction, which exhibits a tunneling barrier with tunneling rates in the low
GHz regime. This allows to observe Coulomb blockade on a carbon nanotube
quantum dot with graphene source and drain leads
Consequential life cycle assessment of biogas, biofuel and biomass energy options within an arable crop rotation
Feed in tariffs (FiTs) and renewable heat incentives (RHIs) are driving a rapid expansion in anaerobic digestion (AD) coupled with combined heat and power (CHP) plants in the UK. Farm models were combined with consequential life cycle assessment (CLCA) to assess the net environmental balance of representative biogas, biofuel and biomass scenarios on a large arable farm, capturing crop rotation and digestate nutrient cycling effects. All bioenergy options led to avoided fossil resource depletion. Global warming potential (GWP) balances ranged from -1732kgCO(2)eMg(-1) dry matter (DM) for pig slurry AD feedstock after accounting for avoided slurry storage to +2251kgCO(2)eMg(-1) DM for oilseed rape biodiesel feedstock after attributing indirect land use change (iLUC) to displaced food production. Maize monoculture for AD led to net GWP increases via iLUC, but optimized integration of maize into an arable rotation resulted in negligible food crop displacement and iLUC. However, even under best-case assumptions such as full use of heat output from AD-CHP, crop-biogas achieved low GWP reductions per hectare compared with Miscanthus heating pellets under default estimates of iLUC. Ecosystem services (ES) assessment highlighted soil and water quality risks for maize cultivation. All bioenergy crop options led to net increases in eutrophication after displaced food production was accounted for. The environmental balance of AD is sensitive to design and management factors such as digestate storage and application techniques, which are not well regulated in the UK. Currently, FiT payments are not dependent on compliance with sustainability criteria. We conclude that CLCA and ES effects should be integrated into sustainability criteria for FiTs and RHIs, to direct public money towards resource-efficient renewable energy options that achieve genuine climate protection without degrading soil, air or water qualit
The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP
Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from
The phenotype of floating-harbor syndrome:clinical characterization of 52 individuals with mutations in exon 34 of SRCAP
Background\ud
Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.\ud
\ud
Methods and results\ud
Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.\ud
\ud
Conclusions\ud
This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.The authors would like to thank the families for their cooperation and permission to publish these findings. SdM would like to thank Barto Otten. Funding was provided by the Government of Canada through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049), by Genome Québec and Genome British Columbia, and the Manton Center for Orphan Disease Research at Children’s Hospital Boston. KMB is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. AD is supported by NIH grant K23HD073351. BBAdV and HGB were financially supported by the AnEUploidy project (LSHG-CT-2006-37627). This work was selected for study by the FORGE Canada Steering Committee, which consists of K. Boycott (University of Ottawa), J. Friedman (University of British Columbia), J. Michaud (University of Montreal), F. Bernier (University of Calgary), M. Brudno (University of Toronto), B. Fernandez (Memorial University), B. Knoppers (McGill University), M. Samuels (Université de Montréal), and S. Scherer (University of Toronto). We thank the Galliera Genetic Bank - “Telethon Genetic Biobank Network” supported by Italian Telethon grants (project no. GTB07001) for providing us with specimens
Response to Letter to the Editor : "A Genome-Wide Pharmacogenetic Study of Growth Hormone Responsiveness"
A Genome-Wide Pharmacogenetic Study of Growth Hormone Responsiveness
Individual patients vary in their response to growth hormone (GH). No large-scale genome-wide studies have looked for genetic predictors of GH responsiveness. To identify genetic variants associated with GH responsiveness. Genome-wide association study (GWAS). Cohorts from multiple academic centers and a clinical trial. A total of 614 individuals from 5 short stature cohorts receiving GH: 297 with idiopathic short stature, 276 with isolated GH deficiency, and 65 born small for gestational age. Association of more than 2 million variants was tested. Primary analysis: individual single nucleotide polymorphism (SNP) association with first-year change in height standard deviation scores. Secondary analyses: SNP associations in clinical subgroups adjusted for clinical variables; association of polygenic score calculated from 697 genome-wide significant height SNPs with GH responsiveness. No common variant associations reached genome-wide significance in the primary analysis. The strongest suggestive signals were found near the B4GALT4 and TBCE genes. After meta-analysis including replication data, signals at several loci reached or retained genome-wide significance in secondary analyses, including variants near ST3GAL6. There was no significant association with variants previously reported to be associated with GH response nor with a polygenic predicted height score. We performed the largest GWAS of GH responsiveness to date. We identified 2 loci with a suggestive effect on GH responsiveness in our primary analysis and several genome-wide significant associations in secondary analyses that require further replication. Our results are consistent with a polygenic component to GH responsiveness, likely distinct from the genetic regulators of adult height
De novo Vessel Formation Through Cross-Talk of Blood-Derived Cells and Mesenchymal Stromal Cells in the Absence of Pre-existing Vascular Structures
Background: The generation of functional blood vessels remains a key challenge for regenerative medicine. Optimized in vitro culture set-ups mimicking the in vivo perivascular niche environment during tissue repair may provide information about the biological function and contribution of progenitor cells to postnatal vasculogenesis, thereby enhancing their therapeutic potential. Aim: We established a fibrin-based xeno-free human 3D in vitro vascular niche model to study the interaction of mesenchymal stromal cells (MSC) with peripheral blood mononuclear cells (PBMC) including circulating progenitor cells in the absence of endothelial cells (EC), and to investigate the contribution of this cross-talk to neo-vessel formation. Materials and Methods: Bone marrow-derived MSC were co-cultured with whole PBMC, enriched monocytes (Mo), enriched T cells, and Mo together with T cells, respectively, obtained from leukocyte reduction chambers generated during the process of single-donor platelet apheresis. Cells were embedded in 3D fibrin matrices, using exclusively human-derived culture components without external growth factors. Cytokine secretion was analyzed in supernatants of 3D cultures by cytokine array, vascular endothelial growth factor (VEGF) secretion was quantified by ELISA. Cellular and structural re-arrangements were characterized by immunofluorescence and confocal laser-scanning microscopy of topographically intact 3D fibrin gels. Results: 3D co-cultures of MSC with PBMC, and enriched Mo together with enriched T cells, respectively, generated, within 2 weeks, complex CD31C /CD34C vascular structures, surrounded by basement membrane collagen type-IVC cells and matrix, in association with increased VEGF secretion. PBMC contained CD31C CD34CCD45dimCD14 progenitor-type cells, and EC of neo-vessels were PBMC-derived. Vascular structures showed intraluminal CD45C cells that underwent apoptosis thereby creating a lumen. Cross-talk of MSC with enriched Mo provided a proangiogenic paracrine environment. MSC co-cultured with enriched T cells formed "cellin-cell" structures generated through internalization of T cells by CD31C CD45dim = cells. No vascular structures were detected in co-cultures of MSC with either Mo or T cells. Conclusion: Our xeno-free 3D in vitro vascular niche model demonstrates that a complex synergistic network of cellular, extracellular and paracrine cross-talk can contribute to de novo vascular development through self-organization via co-operation of immune cells with blood-derived progenitor cells and MSC, and thereby may open a new perspective for advanced vascular tissue engineering in regenerative medicine
Climate regulation, energy provisioning and water purification:quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment
Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. Consequential LCA was applied to evaluate the significance of nutrient interception and retention on the environmental balance of unfertilised energy willow planted on 50-m riparian buffer strips and drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and considering oil heat substitution, strategically planted filter willow can achieve net global warming potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO2e and 47 kg PO4e ha−1 year−1, respectively, compared with a GWP saving of 14.8 Mg CO2e ha−1 year−1 and an EP increase of 7 kg PO4e ha−1 year−1 for fertilised willow. Planting willow on appropriate buffer and filter zones throughout Skåne could avoid 626 Mg year−1 PO4e nutrient loading to waters
- …
