92 research outputs found

    Single Doses up to 800 mg of E-52862 Do Not Prolong the QTc Interval--A Retrospective Validation by Pharmacokinetic-Pharmacodynamic Modelling of Electrocardiography Data Utilising the Effects of a Meal on QTc to Demonstrate ECG Assay Sensitivity.

    Get PDF
    BACKGROUND: E-52862 is a Sigma-1 receptor antagonist (S1RA) currently under investigation as a potential analgesic medicine. We successfully applied a concentration-effect model retrospectively to a four-way crossover Phase I single ascending dose study and utilized the QTc shortening effects of a meal to demonstrate assay sensitivity by establishing the time course effects from baseline in all four periods, independently from any potential drug effects. METHODS: Thirty two healthy male and female subjects were included in four treatment periods to receive single ascending doses of 500 mg, 600 mg or 800 mg of E-52862 or placebo. PK was linear over the dose range investigated and doses up to 600 mg were well tolerated. The baseline electrocardiography (ECG) measurements on Day-1 were time-matched with ECG and pharmacokinetic (PK) samples on Day 1 (dosing day). RESULTS: In this conventional mean change to time-matched placebo analysis, the largest time-matched difference to placebo QTcI was 1.44 ms (90% CI: -4.04, 6.93 ms) for 500 mg; -0.39 ms (90% CI: -3.91, 3.13 ms) for 600 mg and 1.32 ms (90% CI: -1.89, 4.53 ms) for 800 mg of E-52862, thereby showing the absence of any QTc prolonging effect at the doses tested. In addition concentration-effect models, one based on the placebo corrected change from baseline and one for the change of QTcI from average baseline with time as fixed effect were fitted to the data confirming the results of the time course analysis. CONCLUSION: The sensitivity of this study to detect small changes in the QTc interval was confirmed by demonstrating a shortening of QTcF of -8.1 (90% CI: -10.4, -5.9) one hour and -7.2 (90% CI: -9.4, -5.0) three hours after a standardised meal. TRIAL REGISTRATION: EU Clinical Trials Register EudraCT 2010 020343 13

    Unintended consequences of reducing QT-alert overload in a computerized physician order entry system

    Get PDF
    Purpose: After complaints of too many low-specificity drug-drug interaction (DDI) alerts on QT prolongation, the rules for QT alerting in the Dutch national drug database were restricted in 2007 to obviously QT-prolonging drugs. The aim of this virtual study was to investigate whether this adjustment would improve the identification of patients at risk of developing Torsades de Pointes (TdP) due to QT-prolonging drug combinations in a computerized physician order entry system (CPOE) and whether these new rules should be implemented. Methods: During a half-year study period, inpatients with overridden DDI alerts regarding QT prolongation and with an electrocardiogram recorded before and within 1 month of the alert override were included if they did not have a ventricular pacemaker and did not use the low-risk combination cotrimoxazole and tacrolimus. QT-interval prolongation and the risk of developing TdP were calculated for all patients and related to the number of patients for whom a QT-alert would be generated in the new situation with the restricted database. Results: Forty-nine patients (13%) met the inclusion criteria. In this study population, knowledge base-adjustment would reduce the number of alerts by 53%. However, the positive predictive value of QT alerts would not change (31% before and 30% after) and only 47% of the patients at risk of developing TdP would be identified in CPOEs using the adjusted knowledge base. Conclusion: The new rules for QT alerting would result in a poorer identification of patients at risk of developing TdP than the old rules. This is caused by the many non-drug-related risk factors for QT prolongation not being incorporated in CPOE alert generation. The partial contribution of all risk factors should be studied and used to create clinical rules for QT alerting with an acceptable positive predictive value

    Antipsychotics and Torsadogenic Risk: Signals Emerging from the US FDA Adverse Event Reporting System Database

    Get PDF
    Background: Drug-induced torsades de pointes (TdP) and related clinical entities represent a current regulatory and clinical burden. Objective: As part of the FP7 ARITMO (Arrhythmogenic Potential of Drugs) project, we explored the publicly available US FDA Adverse Event Reporting System (FAERS) database to detect signals of torsadogenicity for antipsychotics (APs). Methods: Four groups of events in decreasing order of drug-attributable risk were identified: (1) TdP, (2) QT-interval abnormalities, (3) ventricular fibrillation/tachycardia, and (4) sudden cardiac death. The reporting odds ratio (ROR) with 95 % confidence interval (CI) was calculated through a cumulative analysis from group 1 to 4. For groups 1+2, ROR was adjusted for age, gender, and concomitant drugs (e.g., antiarrhythmics) and stratified for AZCERT drugs, lists I and II (http://www.azcert.org, as of June 2011). A potential signal of torsadogenicity was defined if a drug met all the following criteria: (a) four or more cases in group 1+2; (b) significant ROR in group 1+2 that persists through the cumulative approach; (c) significant adjusted ROR for group 1+2 in the stratum without AZCERT drugs; (d) not included in AZCERT lists (as of June 2011). Results: Over the 7-year period, 37 APs were reported in 4,794 cases of arrhythmia: 140 (group 1), 883 (group 2), 1,651 (group 3), and 2,120 (group 4). Based on our criteria, the following potential signals of torsadogenicity were found: amisulpride (25 cases; adjusted ROR in the stratum without AZCERT drugs = 43.94, 95 % CI 22.82-84.60), cyamemazine (11; 15.48, 6.87-34.91), and olanzapine (189; 7.74, 6.45-9.30). Conclusions: This pharmacovigilance analysis on the FAERS found 3 potential signals of torsadogenicity for drugs previously unknown for this risk

    Differential effects of glucagon-like peptide-1 receptor agonists on heart rate

    Get PDF
    Abstract While glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are known to increase heart rate (HR), it is insufficiently recognized that the extent varies greatly between the various agonists and is affected by the assessment methods employed. Here we review published data from 24-h time-averaged HR monitoring in healthy individuals and subjects with type 2 diabetes mellitus (T2DM) treated with either short-acting GLP-1 RAs, lixisenatide or exenatide, or long-acting GLP-1 RAs, exenatide LAR, liraglutide, albiglutide, or dulaglutide (N\ua0=\ua01112; active-treatment arms). HR effects observed in two independent head-to-head trials of lixisenatide and liraglutide (N\ua0=\ua0202; active-treatment arms) are also reviewed. Short-acting GLP-1 RAs, exenatide and lixisenatide, are associated with a transient (1\u201312\ua0h) mean placebo- and baseline-adjusted 24-h HR increase of 1\u20133\ua0beats per minute (bpm). Conversely, long-acting GLP-1 RAs are associated with more pronounced increases in mean 24-h HR; the highest seen with liraglutide and albiglutide at 6\u201310\ua0bpm compared with dulaglutide and exenatide LAR at 3\u20134\ua0bpm. For both liraglutide and dulaglutide, HR increases were recorded during both the day and at night. In two head-to-head comparisons, a small, transient mean increase in HR from baseline was observed with lixisenatide; liraglutide induced a substantially greater increase that remained significantly elevated over 24\ua0h. The underlying mechanism for increased HR remains to be elucidated; however, it could be related to a direct effect at the sinus node and/or stimulation of the sympathetic nervous system, with this effect related to the duration of action of the respective GLP-1 RAs. In conclusion, this review indicates that the effects on HR differ within the class of GLP-1 RAs: short-acting GLP-1 RAs are associated with a modest and transient HR increase before returning to baseline levels, while some long-acting GLP-1 RAs are associated with a more pronounced and sustained increase during the day and night. Findings from recently completed trials indicate that a GLP-1 RA-induced increase in HR, regardless of magnitude, does not present an increased cardiovascular risk for subjects with T2DM, although a pronounced increase in HR may be associated with adverse clinical outcomes in those with advanced heart failure

    Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials

    Full text link

    The Antibody Targeting the E314 Peptide of Human Kv1.3 Pore Region Serves as a Novel, Potent and Specific Channel Blocker

    Get PDF
    Selective blockade of Kv1.3 channels in effector memory T (TEM) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca2+ or voltage-gated Na+ currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related Kv1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous systerm (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker
    corecore