519 research outputs found

    The Pattern of R2 Retrotransposon Activity in Natural Populations of Drosophila simulans Reflects the Dynamic Nature of the rDNA Locus

    Get PDF
    The pattern and frequency of insertions that enable transposable elements to remain active in a population are poorly understood. The retrotransposable element R2 exclusively inserts into the 28S rRNA genes where it establishes long-term, stable relationships with its animal hosts. Previous studies with laboratory stocks of Drosophila simulans have suggested that control over R2 retrotransposition resides within the rDNA loci. In this report, we sampled 180 rDNA loci of animals collected from two natural populations of D. simulans. The two populations were found to have similar patterns of R2 activity. About half of the rDNA loci supported no or very low levels of R2 transcripts with no evidence of R2 retrotransposition. The remaining half of the rDNA loci had levels of R2 transcripts that varied in a continuous manner over almost a 100-fold range and did support new retrotransposition events. Structural analysis of the rDNA loci in 18 lines that spanned the range of R2 transcript levels in these populations revealed that R2 number and rDNA locus size varied 2-fold; however, R2 activity was not readily correlated with either of these parameters. Instead R2 activity was best correlated with the distribution of elements within the rDNA locus. Loci with no activity had larger contiguous blocks of rDNA units free of R2-insertions. These data suggest a model in which frequent recombination within the rDNA locus continually redistributes R2-inserted units resulting in changing levels of R2 activity within individual loci and persistent R2 activity within the population

    FOLFOX6 and bevacizumab in non-optimally resectable liver metastases from colorectal cancer

    Get PDF
    BACKGROUND: In patients with colorectal liver metastases (CLM) R0 resection significantly improves overall survival (OS). METHODS: In this report, we present the results of a phase II trial of FOLFOX6+bevacizumab in patients with non-optimally resectable CLM. Patients received six cycles of FOLFOX6+ five of bevacizumab. Patients not achieving resectability received six additional cycles of each. A PET-CT was performed at baseline and again within 1 month after initiating treatment. RESULTS: From September 2005 to July 2009, 21 patients were enrolled (Male/Female: 15/6; median age: 65 years). An objective response (OR) was documented in 12 cases (57.1%; complete responses (CRs): 3, partial response (PR): 9); one patient died from toxicity before surgery. Thirteen patients underwent radical surgery (61.9%). Three (23%) had a pathological CR (pCR). Six patients (46.1%) experienced minor postsurgical complications. After a median 38.8-month follow-up, the median OS was 22.5 months. Patients achieving at least 1 unit reduction in Standard uptake value (SUV)max on PET-CT had longer progression-free survival (PFS) (median PFS: 22 vs 14 months, P=0.001). CONCLUSIONS: FOLFOX6+bevacizumab does not increase postsurgical complications, yields high rates of resectability and pCR. Early changes in PET-CT seem to be predictive of longer PFS

    Contrast and Phase Combination in Binocular Vision

    Get PDF
    BACKGROUND: How the visual system combines information from the two eyes to form a unitary binocular representation of the external world is a fundamental question in vision science that has been the focus of many psychophysical and physiological investigations. Ding & Sperling (2006) measured perceived phase of the cyclopean image, and developed a binocular combination model in which each eye exerts gain control on the other eye's signal and over the other eye's gain control. Critically, the relative phase of the monocular sine-waves plays a central role. METHODOLOGY/PRINCIPAL FINDINGS: We used the Ding-Sperling paradigm but measured both the perceived contrast and phase of cyclopean images in three hundred and eighty combinations of base contrast, interocular contrast ratio, eye origin of the probe, and interocular phase difference. We found that the perceived contrast of the cyclopean image was independent of the relative phase of the two monocular gratings, although the perceived phase depended on the relative phase and contrast ratio of the monocular images. We developed a new multi-pathway contrast-gain control model (MCM) that elaborates the Ding-Sperling binocular combination model in two ways: (1) phase and contrast of the cyclopean images are computed in separate pathways, although with shared cross-eye contrast-gain control; and (2) phase-independent local energy from the two monocular images are used in binocular contrast combination. With three free parameters, the model yielded an excellent account of data from all the experimental conditions. CONCLUSIONS/SIGNIFICANCE: Binocular phase combination depends on the relative phase and contrast ratio of the monocular images but binocular contrast combination is phase-invariant. Our findings suggest the involvement of at least two separate pathways in binocular combination

    Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)

    Get PDF
    Using a sample of 122 million Upsilon(3S) events recorded with the BaBar detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for the hb(1P)h_b(1P) spin-singlet partner of the P-wave chi_{bJ}(1P) states in the sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We observe an excess of events above background in the distribution of the recoil mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width of the observed signal is consistent with experimental resolution, and its significance is 3.1sigma, including systematic uncertainties. We obtain the value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Developing Single-Molecule TPM Experiments for Direct Observation of Successful RecA-Mediated Strand Exchange Reaction

    Get PDF
    RecA recombinases play a central role in homologous recombination. Once assembled on single-stranded (ss) DNA, RecA nucleoprotein filaments mediate the pairing of homologous DNA sequences and strand exchange processes. We have designed two experiments based on tethered particle motion (TPM) to investigate the fates of the invading and the outgoing strands during E. coli RecA-mediated pairing and strand exchange at the single-molecule level in the absence of force. TPM experiments measure the tethered bead Brownian motion indicative of the DNA tether length change resulting from RecA binding and dissociation. Experiments with beads labeled on either the invading strand or the outgoing strand showed that DNA pairing and strand exchange occurs successfully in the presence of either ATP or its non-hydrolyzable analog, ATPγS. The strand exchange rates and efficiencies are similar under both ATP and ATPγS conditions. In addition, the Brownian motion time-courses suggest that the strand exchange process progresses uni-directionally in the 5′-to-3′ fashion, using a synapse segment with a wide and continuous size distribution

    Driver self-regulation and depressive symptoms in cataract patients awaiting surgery: a cross-sectional study

    Get PDF
    Background: Cataract is an extremely common visual condition of ageing. Evidence suggests that visual impairment influences driving patterns and self-regulatory behavior among older drivers. However, little is known about the psychological effects of driver self-regulation among older drivers. Therefore, this study aimed to describe driver self-regulation practices among older bilateral cataract patients and to determine the association between self-regulation and depressive symptoms. Methods: Ninety-nine older drivers with bilateral cataract were assessed the week before first eye cataract surgery. Driver self-regulation was measured via the Driving Habits Questionnaire. Depressive symptoms were assessed using the 20-item Center for Epidemiological Studies Depression Scale. Visual, demographic and cognitive data were also collected. Differences between self-regulators and non self-regulators were described and linear regression modeling used to determine the association between driver self-regulation and depressive symptoms score. Results: Among cataract patients, 48% reported self-regulating their driving to avoid at least one challenging situation. The situations most commonly avoided were driving at night (40%), on the freeway (12%), in the rain (9%) and parallel parking (8%). Self-regulators had significantly poorer contrast sensitivity in their worse eye than non self-regulators (p = 0.027). Driver self-regulation was significantly associated with increased depressive symptoms after controlling for potential confounding factors (p = 0.002).Conclusions: Driver self-regulation was associated with increased depressive symptoms among cataract patients. Further research should investigate this association among the general older population. Self-regulation programs aimed at older drivers may need to incorporate mental health elements to counteract unintended psychological effects

    The Death Effector Domains of Caspase-8 Induce Terminal Differentiation

    Get PDF
    The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence
    corecore