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Abstract

The ability of Mycobacterium tuberculosis (Mtb) to thrive in its phagosomal niche is critical for its establishment of a chronic
infection. This requires that Mtb senses and responds to intraphagosomal signals such as pH. We hypothesized that Mtb
would respond to additional intraphagosomal factors that correlate with maturation. Here, we demonstrate that [Cl2] and
pH correlate inversely with phagosome maturation, and identify Cl2 as a novel environmental cue for Mtb. Mtb responds to
Cl2 and pH synergistically, in part through the activity of the two-component regulator phoPR. Following identification of
promoters responsive to Cl2 and pH, we generated a reporter Mtb strain that detected immune-mediated changes in the
phagosomal environment during infection in a mouse model. Our study establishes Cl2 and pH as linked environmental
cues for Mtb, and illustrates the utility of reporter bacterial strains for the study of Mtb-host interactions in vivo.

Citation: Tan S, Sukumar N, Abramovitch RB, Parish T, Russell DG (2013) Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the
Immune Status of its Host Cell. PLoS Pathog 9(4): e1003282. doi:10.1371/journal.ppat.1003282

Editor: William R. Bishai, Johns Hopkins School of Medicine, United States of America

Received October 21, 2012; Accepted February 15, 2013; Published April 4, 2013

Copyright: � 2013 Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a NIAID-NRSA fellowship (F32AI081482) to RBA, by an award (42786) to the Imaging TB consortium (TP) from the Bill &
Melinda Gates Foundation TB Drug Accelerator Program and by US Public Health Services grants AI067027, and HL055936 from the National Institutes of Health
to DGR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dgr8@cornell.edu

¤ Current address: Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, Michigan, United States of America.

Introduction

Mycobacterium tuberculosis (Mtb) causes a chronic infection in

approximately one third of the human population and remains an

important public health problem [1]. The macrophage (MØ) is the

major host cell for much of Mtb’s life cycle, and a defining feature

of Mtb’s pathogenesis is its ability to arrest full maturation of the

phagosome in which it resides [2,3]. Indeed, Mtb mutants that fail

to arrest phagosomal maturation have reduced survival during

MØ infection [4]. However, Mtb remains subject to multiple

stresses within the phagosome, which may act as important

environmental cues for Mtb [5]. Proper sensing of such signals

informs Mtb of its surroundings, allowing the bacterium to

respond appropriately to ensure its survival and replication.

Elucidating the cues that Mtb recognizes during infection, and the

possible interplay between such signals, is critical for a complete

understanding of the impact of the microenvironment on Mtb

pathogenesis and persistence, and Mtb’s interaction with funda-

mental host cell processes.

One environmental cue that has received particular attention is

pH; the Mtb phagosome acidifies to an intermediate pH of 6.4

[3,4,6], and even in medium, the bacterium exhibits a profound

transcriptional response to acidic pH [5,7,8]. The abolition of

phagosome acidification during bacterial uptake by MØs, through

treatment with concanamycin A, eliminates a majority of Mtb’s

transcriptional response, indicating the importance of pH as a

signal for the bacterium in sensing and responding to its

environment [5]. The process of acidification does not, however,

proceed in isolation. Specifically, acidification (increase in [H+])

must be counterbalanced by efflux of other cations from the

phagosome, and/or by the uptake of a counter anion. We

hypothesized that Mtb might also take advantage of this

counterbalancing factor as an environmental cue, expanding the

sensitivity and dynamic range of its ability to define its immediate

environment. Cell biological studies have established Cl2 as a

major counter anion during acidification of the endosome [9–11].

Several Cl2 channels are known to be present on the endosomal

membrane [12,13], although it remains controversial which of

these channels are involved in the counter-balancing of increased

[H+] during endosomal maturation [14,15]. More recent studies

have also proposed efflux of cations, such as K+, as a counter

mechanism to increased [H+] in the lysosome [16]. The existence

of such mechanisms have not, however, been formally shown for

phagosomes. In this context, it is of particular note that the Mtb

phagosome has been reported to possess a high [Cl2] [17]. The

impact of common ions and changes in their concentration on

Mtb during infection is a concept that is just beginning to be

appreciated [18]; however, much remains to be determined

regarding their physiological significance.

In this study, we show that [Cl2] increases during phagosome

maturation, mirroring a decrease in pH within the compartment.

Mtb modulates its transcriptional profile in response to [Cl2], and

reacts to the environmental cues of pH and [Cl2] in a synergistic

manner, with the two-component regulatory system phoPR playing
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a central role in this response. By constructing a fluorescent

reporter Mtb strain responsive to both Cl2 and pH, we were

further able to directly examine the microenvironment of Mtb

during in vivo infection in a mouse model. Maturation of Mtb-

containing phagosomes is known to be impacted by the immune

status of the MØ. Infection of wild type versus immune-deficient

interferon-c2/2 mice revealed differential induction of fluores-

cence in vivo, and demonstrated the influence of host immune

pressure on the microenvironment in which Mtb resides. These

data were further validated with a second Mtb reporter strain,

expressing GFP under the regulation of the more fully-character-

ized hypoxia and nitric oxide-responsive dosR regulon [19–22].

The results confirm existing hypotheses concerning localized

immune-mediated pressure within infection foci, and provide a

new generation of tools to probe the fitness and viability of Mtb in

in vivo infection models.

Results/Discussion

[Cl2] increases during phagosomal maturation
We first sought to establish the dynamics of [Cl2] during

maturation of the phagosome with model particles. The fluores-

cent Cl2-sensitive, pH-insensitive compound 10,109-Bis[3-carbox-

ylpropyl]-9,99-biacridinium (BAC) [9] was synthesized as a

trifluoroacetate salt, and coupled to IgG beads. As previously

reported, BAC fluorescence is quenched by Cl2 in a concentra-

tion-dependent manner, and is unaffected by pH changes (Figure

S1 in Text S1) [9]. To track [Cl2] changes during phagosomal

maturation we attached Alexa Fluor 594 (AF594) as a calibration

fluorophore to the BAC-IgG beads. These dual-color Cl2 sensor

beads were added to murine bone marrow-derived MØs and

fluorescence measured in a microplate reader. We observed an

increase in AF594/BAC fluorescence ratios over time, indicating

an increase in [Cl2] as the phagosome matured (Figure 1A). This

increase in [Cl2] was also observed with phagosome maturation in

MØs derived from human monocytes (Figure 1B). To calibrate

AF594/BAC ratios to actual [Cl2], we treated MØs that had

phagocytosed Cl2 sensor beads with bafilomycin A1 and the

ionophores nigericin and monensin in buffers of known [Cl2]. By

fitting a polynomial regression to the standard curve (Figure S2 in

Text S1), we calculate that phagosomal [Cl2] reached a maximal

concentration of ,70–95 mM. As this is a population-based

measurement, we note that this value range underestimates the

[Cl2] that can be reached in individual phagosomes (see below).

We further examined the dynamics of [Cl2] increase during

phagosome maturation by tracking individual beads during

phagocytosis by live-cell time-lapse microscopy. These experi-

ments showed that the switch from low [Cl2] to high [Cl2]

occurred for most beads, although a subset remained in

phagosomes with low [Cl2] (Figure 1C and Video S1). Imaging

of populations of Cl2 sensor bead-containing cells at given time

points illustrated the heterogeneity in [Cl2] attained in individual

phagosomes, with measurements indicating that a [Cl2] greater

than 120 mM was reached in some phagosomes (Figure 1D).

Similar results were obtained in MØs derived from human

monocytes (data not shown). Cl2 sensor beads present in media

alone and imaged in parallel did not show significant changes in

fluorescence, demonstrating that the decrease in BAC fluorescence

observed in the phagocytosed beads has a biological basis and is

not due to bleaching of the fluorescent signal during imaging

(Video S2).

In examining these results, we noted that the increase in [Cl2]

mirrored the kinetics of the decrease in phagosomal pH previously

reported [23]. In order to quantify this correlation directly within a

single experiment, we coupled BAC to IgG beads in combination

with the red fluorescent pH sensor pHrodo, which exhibits an

increase in fluorescence as pH decreases. Measurement of the

fluorescence profile of the beads during phagocytosis by MØs

showed the previously observed quenching of BAC signal

indicative of increased [Cl2] as the phagosome matured

(Figure 1E). pHrodo fluorescence on the same particles exhibited

an inverse profile, increasing in intensity over time, signaling a

decrease in pH (Figure 1E). Analysis of the phagocytosis of the

BAC/pHrodo indicator beads by live-cell time-lapse microscopy

further verified these results at the individual phagosome level

(Figure 1F and Video S3). Similar profiles were observed in MØs

derived from human monocytes (data not shown). We also verified

that BAC/pHrodo beads imaged in media alone did not show

such changes in fluorescence profile (Video S4).

Further support for the relation between [Cl2] and pH during

phagosomal maturation was demonstrated by the failure of

phagosomal [Cl2] to increase when MØs were treated with

bafilomycin A1 (Figure S3A in Text S1). Similarly, addition of

bafilomycin A1 to the MØs after phagosomes containing the Cl2

sensor beads had initially been allowed to mature resulted in

increased BAC fluorescence, indicating a reversal of the Cl2

accumulation upon dissipation of the pH gradient (Figure S3B in

Text S1). Together, these results demonstrate that [Cl2] increases

during phagosomal maturation, and supports the proposed

functional relationship between acidification of the endosomes

and [Cl2] increase [9–11].

Mtb regulates gene expression in response to Cl2, with a
subset corresponding to pH responsive genes

Mtb shows a marked transcriptional response upon exposure to

acidic pH, and we have previously shown that almost half of the

Mtb genes upregulated during an early stage of MØ infection are

induced in a pH-dependent manner [5]. Given our results

indicating [Cl2] increase during phagosomal maturation and the

link between [Cl2] and acidification, we compared the transcrip-

tional profiles of Mtb grown in regular 7H9 media to those grown

in 7H9 media supplemented with 250 mM NaCl for 4 hours. The

number of genes (32) upregulated on exposure to high [Cl2] was

noticeably fewer than the hundreds previously reported to be

Author Summary

Mycobacterium tuberculosis (Mtb) is the causative agent of
tuberculosis, a disease that remains a major global health
problem. To ensure its long-term survival in the host, Mtb
must be able to sense and respond to changes in its
immediate environment, such as the pH differences that
occur in the phagosome in which it lives. Knowledge of
the external signals that Mtb recognizes during infection is
critical for understanding the impact of the microenviron-
ment on Mtb pathogenesis and persistence, and how Mtb
interacts with its host cell. We show here that [Cl2]
correlates inversely with pH as the phagosome matures,
and identify [Cl2] as a novel cue that Mtb responds to, in
synergism with pH. By constructing a Mtb strain that
fluorescently reports on changes in [Cl2] and pH, we find
using a mouse model of infection that environmental
alterations in Mtb’s phagosomal home are mediated at the
local level by activities of the host immune system. Our
study demonstrates how a pathogen can exploit linked
environmental cues during infection, and shows the value
of reporter bacterial strains for Mtb-host whole animal
studies.

Chloride Is a Novel Environmental Cue for Mtb
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induced under acidic pH (Table 1) [5,7]. Strikingly however, a

significant number of genes that were upregulated in the presence

of high [Cl2] (18/32) were genes that also showed increased

expression during exposure to acidic pH (Table 1).

The upregulated gene expression detected by microarrays was

validated by semi-quantitative real time PCR (qRT-PCR) for

several genes. These experiments were also carried out on samples

exposed to acidic pH (pH 5.7), and showed data consistent with

the microarray analysis (Figure S4 in Text S1). While our

microarray platform allows for the global analyses of gene

expression changes, it does have a flattened dynamic range

[5,24], and the qRT-PCR data indicate that the actual level of

induction is considerably greater. These experiments indicate that

Mtb responds transcriptionally to Cl2, and further reinforce the

idea that pH and Cl2 may function as interconnected environ-

mental cues for Mtb during the course of infection.

Figure 1. [Cl2] increases and pH decreases during phagosome maturation. (A and B) [Cl2] increases during phagosome maturation. BAC/
AF594 beads were added to murine bone marrow-derived MØs (A) or MØs derived from human monocytes (B). In each case, sensor beads were also
added to wells containing only media, with no MØs (‘‘Media only’’). BAC (Cl2-sensitive) and AF594 (calibration fluorophore) fluorescence were tracked
with a microplate reader over time. Data are shown as means 6 SD from 4 wells. (C) Single Cl2 sensor bead tracking during phagosome maturation.
Cl2 sensor beads were added to murine bone marrow-derived MØs and fluorescence for individual beads tracked over time by live-cell time-lapse
microscopy (see Video S1). Each line on the graph represents a single bead. (D) Heterogeneity of [Cl2] in individual phagosomes. BAC/AF594 beads
were added to murine bone marrow-derived MØs and fluorescence measured at indicated time points. Each point on the graph represents a single
bead. Bars represent mean values. (E) [Cl2] and pH are inversely correlated during phagosome maturation. BAC/pHrodo beads were added to murine
bone marrow-derived MØs and BAC (green) and pHrodo (red) fluorescence tracked with a microplate reader over time. F0 is fluorescence at
time = 0 min, and F is fluorescence at each given time point. Data are shown as means 6 SD from 4 wells. (F) Single BAC/pHrodo bead tracking
during phagosome maturation. BAC/pHrodo beads were added to murine bone marrow-derived MØs and fluorescence for individual beads tracked
over time by live-cell time-lapse microscopy (see Video S3). F0 is fluorescence at time = 0 min, and F is fluorescence at each given time point. Each
color represents a single bead, with solid lines tracking BAC signal and dashed lines tracking pHrodo signal from the same bead.
doi:10.1371/journal.ppat.1003282.g001

Chloride Is a Novel Environmental Cue for Mtb
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Mtb carrying an rv2390c promoter-GFP fusion functions
as a Cl2 and pH reporter

To perform analyses of Cl2 and pH as environmental cues for

live Mtb, we utilized the microarray and qRT-PCR results to

select candidate genes for construction of a reporter Mtb strain

that would be responsive to both changes in [Cl2] and pH. We

focused on the rv2390c-rpfD operon, which appeared particular

promising as both genes in the operon showed robust induction

under conditions of high [Cl2] or acidic pH (Figure S4 in Text

S1). The promoter region of rv2390c was cloned upstream of GFP

in a replicating plasmid, and transformed into Mtb CDC1551.

This CDC1551(rv2390c’::GFP) reporter strain was then grown in

media +/2 250 mM NaCl, buffered to pH 7.0 to study [Cl2]

effects at neutral pH, or in media buffered at pH 5.7, without

added NaCl. Using FACS analysis, we observed an increase in

GFP fluorescence of CDC1551(rv2390c’::GFP) in conditions of

high [Cl2] or acidic pH over time, with peak inductions of 7–9

fold over control in each instance (Figure 2A). To verify the Cl2-

specificity of the response, we tested several other compounds for

their ability to induce GFP fluorescence in

CDC1551(rv2390c’::GFP), including KCl, arginine-HCl, Na2SO4,

and sucrose, in media buffered at pH 7.0. Induction was observed

with compounds containing Cl2, but not with Na2SO4 and

sucrose, indicating that Cl2 was the agent responsible for the

increase in GFP signal, and suggesting that neither Na+ nor

osmolarity were contributory factors (Figure S5 in Text S1).

Induction of rv2390c’::GFP expression was also reversible, with

GFP fluorescence returning to baseline levels within 5 days of

removal of the high [Cl2] stimulus in log-phase bacteria (Figure

S6 in Text S1). These data, along with the lack of induction

observed with other stressors such as NO and hypoxia (Figure S7

in Text S1), argue for the usefulness of CDC1551(rv2390c’::GFP)

as a specific reporter Mtb strain for the intraphagosomal cues of

pH and Cl2.

Table 1. Overlap between Mtb genes upregulated on exposure to high [Cl2] or acidic pH.

Gene Name Ratio Acidic pH induced Description

MT0772.5 1.59 + PE-PGRS family protein

MT1178 1.36 2 HP

MT1746.1 1.73 2 HP

MT2423.1 1.34 2 HP

MT3106.1 1.44 + PE family protein

Rv0263c 1.42 + CHP

Rv0264c 1.47 + CHP

Rv0516c 1.58 2 CHP

Rv1057 1.61 + CHP

Rv1115 1.51 2 HP

Rv1187 (rocA) 1.37 + Pyrroline-5-carboxylate dehydrogenase

Rv1376 1.50 2 CHP

Rv1403c 1.96 + Methyltransferase

Rv1405c 2.98 + Methyltransferase

Rv1497 (lipL) 1.36 2 esterase

Rv1577 1.30 + phiRv1 phage protein

Rv1705c (ppe22) 1.86 2 PPE family protein

Rv1706c (ppe23) 1.33 + PPE family protein

Rv2389c (rpfD) 1.31 + Resuscitation promoting factor

Rv2390c 2.00 + CHP

Rv2450c (rpfE) 1.31 2 Resuscitation promoting factor

Rv2549c 1.35 2 CHP

Rv2651c 1.60 2 phiRv2 phage protease

Rv3093c 1.44 2 Oxidoreductase

Rv3252c (alkB) 1.33 + Transmembrane alkane 1-monooxygenase

Rv3429 (ppe59) 1.33 2 PPE family protein

Rv3613c 1.48 + HP

Rv3614c 1.53 + CHP

Rv3615c 1.51 + CHP

Rv3616c 1.49 + CHP

Rv3746c (pe34) 1.92 + PE family protein

Rv3841 (bfrB) 1.38 2 bacterioferritin

List of genes upregulated .1.3 fold on exposure to 250 mM NaCl for 4 hrs (p,0.05). Genes induced (+) or unchanged (2) by acidic pH, as determined by comparison to
references [5,7]. HP, hypothetical protein. CHP, conserved hypothetical protein.
doi:10.1371/journal.ppat.1003282.t001

Chloride Is a Novel Environmental Cue for Mtb
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To determine if Mtb’s response to Cl2 occurs in a concentra-

tion-dependent manner, we repeated the time-course induction

assays with media containing different [Cl2] at pH 7.0. GFP

fluorescence of CDC1551(rv2390c’::GFP) increased as [Cl2] rose,

showing Mtb’s ability to modulate its response to [Cl2] in a

manner comparable to a rheostat (Figure 2B). In agreement with a

previous study reporting Mtb’s dynamic response to diminishing

pH [24], we also observed increasing GFP signal with decreasing

pH for CDC1551(rv2390c’::GFP) (Figure 2C). These results further

demonstrate the usefulness of CDC1551(rv2390c’::GFP) as a

reporter Mtb strain for Cl2 and pH, and indicate that Mtb’s

response to these two environmental cues is fine-tuned by its

environment.

Cl2 and pH act synergistically as environmental cues for
Mtb

To test whether Cl2 and pH might act synergistically as

intraphagosomal cues, we incubated CDC1551(rv2390c’::GFP) in

media buffered at pH 5.7, with 250 mM NaCl. These conditions

resulted in induction of GFP fluorescence to a level (.50 fold)

much greater than merely the sum of the GFP signal obtained

when the bacteria were grown in conditions with only one cue

(high [Cl2] or acidic pH) (Figure 3A). qRT-PCR tests on several

genes in wild type Mtb (WT) exposed to the different conditions

confirmed the synergistic activity (Figure 3B).

This synergy implied cross-talk between regulatory circuits. In

particular, we examined the role of the two-component regulator

phoPR, a system previously shown to be required for expression of

the acid and phagosome-regulated locus aprABC [24], and whose

regulon significantly overlaps the list of genes regulated in a pH-

dependent manner during MØ infection [5,8]. We found that

unlike WT, a phoP::Tn mutant carrying the rv2390c’::GFP reporter

failed to induce GFP fluorescence during growth at acidic pH,

supporting the critical role of phoP in regulating Mtb’s response to

pH (Figure 3C). Our experiments further indicated that phoP also

played a role in regulating Mtb’s response to Cl2, as induction of

the GFP reporter signal during growth in high [Cl2] was reduced

in the phoP::Tn mutant as compared to WT (1.5–2 fold vs. 7–9

fold) (Figure 3C). Intriguingly, GFP induction with the reporter

phoP::Tn mutant in conditions of high [Cl2] at acidic pH (4 fold)

was still greater than that observed with high [Cl2] alone, despite

the lack of induction with acidic pH as a single signal (Figure 3C).

qRT-PCR analyses on a DphoPR Mtb mutant, as well as a

complemented DphoPR strain (phoPR*), confirmed these data.

There was decreased induction of target transcript in conditions of

high [Cl2] alone or high [Cl2] at acidic pH in the DphoPR mutant

as compared to WT (3 vs. 5 fold and 12 vs. .50 fold respectively),

and no increase in transcript at acidic pH for the mutant

(Figure 3D). Genetic complementation restored transcript induc-

tion in the mutant to WT levels (Figure 3D).

These results implicate phoPR as a regulator that modulates

Mtb’s response to Cl2, while also indicating that it is merely one

part of a regulatory circuit that impacts this response.

[Cl2] and pH in the Mtb phagosome change during MØ
infection

Having established that Mtb’s response to Cl2 and pH is

interconnected in vitro, we next pursued these studies in the context

of MØ infection by Mtb. To make use of the rv2390c’::GFP

reporter for these intracellular studies, we first moved the construct

into a replicating plasmid containing mCherry driven by the

constitutive promoter smyc [24,25], to generate the strain

CDC1551(rv2390c’::GFP, smyc’::mCherry) (Figure S8 in Text

Figure 2. An rv2390c’::GFP strain functions as a Cl2 and pH
responsive reporter Mtb. (A) Mtb responds to Cl2 and pH.
CDC1551(rv2390c’::GFP) was grown in vitro in media at pH 7.0 (control,
circles), pH 7.0+250 mM NaCl (squares), or pH 5.7 (triangles). Samples
were taken over time, fixed, and GFP signal analyzed by FACS. Data are
shown as means 6 SD from 3 independent experiments. (B and C) Mtb
responds to Cl2 and pH in a concentration-dependent manner.
CDC1551(rv2390c’::GFP) was grown in vitro in media at pH 7.0
supplemented with different [NaCl] (B), or in media at different pH
(C). Samples were analyzed as in (A). Data are shown as means 6 SD
from 3 independent experiments.
doi:10.1371/journal.ppat.1003282.g002

Chloride Is a Novel Environmental Cue for Mtb
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S1). This allows visualization of all bacteria regardless of reporter

induction levels, and an internal calibration of the GFP signal.

Activation of MØs prior to infection with Mtb is known to

increase the maturation stage and lower the pH of the bacteria-

containing vacuoles [26,27], which should increase induction of

GFP expression as a function of both pH and [Cl2]. Resting or

activated murine bone marrow-derived MØs were infected with

the reporter Mtb strain, and samples examined by confocal

microscopy. We observed increased GFP fluorescence as the

infection progressed, with significantly more induction of GFP

signal in the activated MØs (Figures 4A and 4B). This difference in

the microenvironment experienced by Mtb during infection of

resting or activated MØ was even more starkly illustrated by pre-

incubating the reporter Mtb in conditions of high [Cl2] prior to

MØ infection. In this case, the inoculating bacteria had an

increased level of rv2390c’-driven GFP expression at the start of

infection, and exhibited an enhanced divergence in GFP signal

between the resting and activated MØs (Figures 4C and 4D).

These experiments indicate that Mtb experiences different

[Cl2] and pH during MØ infection, dependent on the activation

status of the host MØ, and points to dynamic regulation of its gene

expression in response to these environmental cues.

Reporter Mtb strains directly reveal Mtb’s
microenvironment during in vivo infection, and
demonstrate the impact of host immune pressure on
environmental cues

The MØ experiments above demonstrate the feasibility of using

the CDC1551(rv2390c’::GFP, smyc’::mCherry) reporter strain to

reveal important aspects of Mtb’s microenvironment during

infection. We sought to test the utility of this reporter system in

a whole animal infection where the infection foci will likely present

regional variation in immune responsiveness and heterogeneous

levels of MØ activation. To probe if we could detect regional

variation in immune-mediated modulation of infected MØs, we

infected C57BL/6J WT or isogenic interferon-c2/2 (IFNc2/2)

mice with Erdman(rv2390c’::GFP, smyc’::mCherry) via intranasal

inoculation. IFNc2/2 mice fail to properly activate their MØs on

infection and are susceptible to Mtb, developing a disseminated

infection that is fatal [28,29]. The Erdman strain was used for

these experiments, as it establishes robust infection in mice. In vitro

tests show that the Erdman reporter strain responds similarly to

both Cl2 and pH (Figure S9 in Text S1).

Infected mice were sacrificed at 14 and 28 days post-challenge,

and lung tissue examined by confocal microscopy. We observed

significantly higher GFP fluorescence in the reporter strain in WT

vs. IFNc2/2 mice at each time point examined (Figures 5A and

5B). In the case of IFNc2/2 mice, we also noted a disseminated

infection, in agreement with previous studies (Figure 5A) [28,29].

These results faithfully reproduce our MØ experiments since

IFNc2/2 mice, which are unable to activate their MØs, exhibit

reduced expression of the GFP reporter signal.

To further examine the impact of host immune pressure on

determining Mtb’s microenvironment, we used host inducible

nitric oxide synthase (iNOS) expression as an indicator of immune

activation in WT mice at 28 days post-infection. This allowed us to

compare Mtb resident in regions with vs. without an active

immune response, within a single infected WT host. A first

observation was that most Mtb were located in iNOS-positive

regions in the mouse lung tissue (Figures 5C and 5D). Significantly

however, we found greater reporter GFP fluorescence in the

Figure 3. Links between Mtb’s response to Cl2 and pH. (A) Mtb responds synergistically to Cl2 and pH. CDC1551(rv2390c’::GFP) was grown in
vitro in media at pH 7.0 (control, circles), pH 7.0+250 mM NaCl (squares), pH 5.7 (triangles), or pH 5.7+250 mM NaCl (diamonds). Samples were taken
over time, fixed, and GFP signal analyzed by FACS. Data are shown as means 6 SD from 3 independent experiments. (B) Mtb’s synergistic response to
Cl2 and pH is reflected transcriptionally. qRT-PCR of gene expression in WT grown as in (A) for 4 hrs. Fold induction is as compared to WT grown in
media at pH 7.0. Data are shown as means 6 SD from 3 technical replicates. (C) phoPR is required for Mtb’s response to pH and plays a role in its Cl2

response. CDC1551(rv2390c’::GFP, phoP::Tn) was grown in vitro in media at pH 7.0 (control, circles), pH 7.0+250 mM NaCl (squares), pH 5.7 (triangles),
or pH 5.7+250 mM NaCl (diamonds). Samples were taken over time, fixed, and GFP signal analyzed by FACS. Data are shown as means 6 SD from 3
independent experiments. (D) Complementation of DphoPR restores Mtb’s response to pH and Cl2. qRT-PCR of rv2390c expression in WT, DphoPR,
and the complemented mutant (phoPR*) grown as in (C) for 4 hrs. Fold induction is as compared to the corresponding strain grown in media at
pH 7.0. Data are shown as means 6 SD from 3 technical replicates.
doi:10.1371/journal.ppat.1003282.g003
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bacteria residing in iNOS-positive regions vs. those located in

iNOS-negative regions (Figure 5D). This result reinforces the

concept that host immune pressure can impact substantially on

the cues that Mtb responds to in its microenvironment, and that

reporter Mtb strains can be exploited to shed light on the signals

the bacteria are exposed to during in vivo infection. In particular

in the context of the rv2390c’::GFP reporter, it suggests that Mtb

experiences a microenvironment with higher [Cl2] and more

acidic pH during infection of a host with an activated immune

system. While the complex nature of in vivo infection means that

it remains possible that there are yet other, unidentified, factors

that also contribute to the differential induction of GFP

fluorescence observed, the apparent specificity of the

rv2390c’::GFP reporter supports the notion of [Cl2] and pH

being at least two of the major drivers of the phenotype

observed. This is also consistent with the increase acidification of

Mycobacterium-containing phagosomes in activated MØs reported

previously [4,27,30], and supports the contention that the

bacteria are delivered live to a compartment that represents a

more hostile environment.

In order to further validate the utility of reporter strains for

studying Mtb infection, we performed additional experiments to

examine the possibility of generating a second, independent

reporter Mtb strain that would respond to different environmental

cues from the rv2390c’::GFP reporter strain. In particular, we

pursued in vivo studies with a hspX promoter-driven reporter strain.

hspX is a much-studied Mtb gene often used as a marker of

expression of the dos regulon, known to respond to hypoxia and

NO [19–22]. As expected, in vitro, GFP induction of an

Erdman(hspX’::GFP, smyc’::mCherry) reporter strain varied with

O2 tension and NO (Figures 6A and 6B). Confocal microscopy

analyses of lung tissue from mice infected with Erd-

man(hspX’::GFP, smyc’::mCherry) showed significantly greater

induction of Mtb reporter GFP fluorescence in WT vs. IFNc2/

2 mice at both 14 and 28 days post-infection (Figures 6C and 6D).

We also observed much greater induction of hspX’-driven GFP

Figure 4. [Cl2] and pH in the Mtb phagosome change during MØ infection. (A and B) Expression of rv2390c-rpfD is upregulated during Mtb
infection of activated vs. resting MØs. Resting or activated murine MØs were infected with CDC1551(rv2390c’::GFP, smyc’::mCherry). (A) shows 3D
confocal images of the infection at the beginning (2 hrs) and end (8 days) of the infection. All bacteria are marked in red (smyc’::mCherry), the
reporter is shown in green (rv2390c’::GFP), and nuclei are shown in blue (DAPI). Scale bar 5 mm. (B) shows quantification of the GFP/mm3 signal for
each bacterium measured from multiple 3D confocal images. Each point on the graph represents a bacterium or a tightly clustered group of bacteria
(circles – Mtb in resting MØs, squares – Mtb in activated MØs). p-values were obtained with a Mann-Whitney statistical test. (C and D) Mtb pre-
treatment with high [Cl2] leads to divergent rv2390c’::GFP signal during infection of resting vs. activated MØs. CDC1551(rv2390c’::GFP,
smyc’::mCherry) was exposed to 250 mM NaCl for 6 days prior to infecting resting or activated murine MØs. (C) shows 3D confocal images of the
infection at the beginning (2 hrs) and end (8 days) of the infection. All bacteria are marked in red (smyc’::mCherry), the reporter is shown in green
(rv2390c’::GFP), and nuclei are shown in blue (DAPI). Scale bar 5 mm. (D) shows quantification of the bacterial GFP/mm3 signal, determined as in (B). p-
values were obtained with a Mann-Whitney statistical test.
doi:10.1371/journal.ppat.1003282.g004
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signal at 28 days vs. 14 days post-infection, in accord with the

reported time-frame of iNOS synthesis during Mtb infection in

WT mice (Figures 6C and 6D) [31]. Immunofluorescent staining

of iNOS further showed significantly higher hspX’-driven GFP

fluorescence in Mtb residing in iNOS-positive vs. negative regions

in WT mice (Figure 6E). Together with the Erd-

man(rv2390c’::GFP, smyc’::mCherry) results above, these experi-

ments illustrate that both reporter Mtb strains reliably detect and

respond to localized regions of immune activation in vivo, and

support the usefulness of reporter Mtb strains for studies of Mtb-

host interactions.

Concluding remarks
Our finding that Mtb can utilize Cl2 as an environmental cue,

in synergy with pH, is a first illustration of a pathogen exploiting

interlinked host signals during phagosome maturation. Important-

ly, Mtb responds to these cues not just in vitro but also during in vivo

infection, where these signals are modulated by immune activity of

the host. Most studies on Mtb and its response to environmental

cues have centered on in vitro assays and homogeneous bacterial

cultures.

While these constitute an important foundation they provide

little insight into how Mtb senses and responds to environmental

cues in vivo, where the heterogeneity linked to location and

immune activation is critical in determining the productiveness of

the diverse subpopulations of Mtb present in an infected host [32].

In the current study we validated the two reporter strains for their

ability to respond to stresses relevant to their survival in vivo. Using

confocal microscopy and rigorous quantification of GFP fluores-

cence at the level of the individual bacterium, we were able to

probe infected mouse tissue and demonstrate that: (1) GFP

expression level was linked to immune activation by IFNc, (2)

bacteria in regions that stained positive for the activation marker

iNOS exhibited higher levels of GFP expression, and (3) the

heterogeneity amongst the bacterial population was as marked as

predicted [32], and can only be revealed by panels of reporter

Figure 5. Reporter Mtb strains illustrate the link between immune pressure and bacterial microenvironment. (A and B) Greater
induction of rv2390c’::GFP during Mtb infection of WT vs. IFNc2/2 mice. WT or IFNc2/2 C57BL/6J mice were infected with Erdman(rv2390c’::GFP,
smyc’::mCherry) for up to 28 days. (A) shows 3D confocal images from a 14 day infection. All bacteria are marked in red (smyc’::mCherry), the reporter
is shown in green (rv2390c’::GFP), nuclei are shown in grayscale (DAPI), and phalloidin staining of f-actin is shown in blue. Scale bar 10 mm. (B) shows
quantification of the GFP/mm3 signal for each bacterium measured from multiple 3D confocal images, at 14 or 28 days post-infection. Each point on
the graph represents a bacterium or a tightly clustered group of bacteria (circles – Mtb in WT mice, squares – Mtb in IFNc2/2 mice). p-values were
obtained with a Mann-Whitney statistical test. (C and D) Immune activation upregulates rv2390c’::GFP induction. C57BL6/J WT mice were infected
with Erdman(rv2390c’::GFP, smyc’::mCherry) for 28 days. (C) shows 3D confocal images of the infection with bacteria marked in red (smyc’::mCherry),
reporter signal shown in green (rv2390c’::GFP), iNOS stained in magenta, nuclei shown in grayscale (DAPI), and phalloidin staining of f-actin shown in
blue. Scale bar 10 mm. (D) shows quantification of the bacterial GFP/mm3, determined as in (B), in Mtb present in iNOS-positive vs. negative regions. p-
values were obtained with a Mann-Whitney statistical test.
doi:10.1371/journal.ppat.1003282.g005
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bacteria such as the ones developed in this current study. We feel

that these strains represent a new generation of tools to probe the

fitness of Mtb in vivo. These strains should enable us to functionally

dissect the TB granuloma to identify privileged regions of bacteria

growth, or hostile areas of immune containment. We also predict

that these strains will be valuable in probing for drug action and

tissue penetrance, through enhanced stress, as one tries to improve

drug availability in vivo.

Extending beyond Mtb, our results also have potential

implications for other intracellular organisms that similarly

experience compartments with a range of decreased pH, such as

the bacteria Coxiella burnetti [33] and Brucella [34], and the parasite

Figure 6. A reporter Mtb strain responsive to O2 tension and NO. (A) hspX’::GFP responds to hypoxia. Erdman(hspX’::GFP, smyc’::mCherry) was
grown in 7H9 broth in stirred cultures and exposed to changing O2 tension (10% to 0.05%) stepwise over 6 days. Samples at indicated O2 tensions
were fixed and GFP signal analyzed by FACS. Data are shown as means 6 SD from 3 independent experiments. (B) hspX’::GFP responds to NO.
Erdman(hspX’::GFP, smyc’::mCherry) was grown in 7H9 broth in stirred, aerated, cultures +/2 100 mM DETA/NO for 2 days. Samples were fixed and
GFP signal analyzed by FACS. Data are shown as means 6 SD from 3 independent experiments. (C and D) Differential induction of hspX’::GFP during
Mtb infection of WT vs. IFNc2/2 mice. WT or IFNc2/2 C57BL/6J mice were infected with Erdman(hspX’::GFP, smyc’::mCherry) for up to 28 days. (C)
shows 3D confocal images from a 14 or 28 day infection. All bacteria are marked in red (smyc’::mCherry), the reporter is shown in green (hspX’::GFP),
nuclei are shown in grayscale (DAPI), and phalloidin staining of f-actin is shown in blue. Scale bar 10 mm. (D) shows quantification of the GFP/mm3

signal for each bacterium measured from multiple 3D confocal images, at 14 or 28 days post-infection. Each point on the graph represents a
bacterium or a tightly clustered group of bacteria (circles – Mtb in WT mice, squares – Mtb in IFNc2/2 mice). p-values were obtained with a Mann-
Whitney statistical test. (E) Immune activation upregulates hspX’::GFP induction. C57BL6/J WT mice were infected with Erdman(hspX::GFP,
smyc’::mCherry) for 28 days. Graph shows quantification of the bacterial GFP/mm3, determined as in (D), in Mtb present in iNOS-positive vs. negative
regions. p-values were obtained with a Mann-Whitney statistical test.
doi:10.1371/journal.ppat.1003282.g006
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Leishmania [35]. Might these microbes also respond to Cl2, and is

the ability to use Cl2 and pH as synergistic cues a more

widespread phenomenon? In bacterial studies, Cl2 has largely

been examined only within the context of salt tolerance and

osmolarity. Few reports have studied Cl2 itself in the context of

bacterial-host interactions, although Radtke and colleagues

proposed that increased [Cl2] aided Listeria monocytogenes phago-

somal escape by increased activation of listeriolysin O [36].

Our study further raises the question of what roles other

common ions might have on bacterial-host interactions. Although

ions, such as iron, that serve as essential micronutrients and are

actively sequestered by the host have long been recognized as

important focal points for bacterial-host interactions [37], the

possible impact of more common ions, like Cl2, remain largely

unstudied. In addition to Cl2, we speculate that other common

ions, such as K+, might also act as a signal for infecting bacteria.

There are several known bacterial K+ transporters [38], and these

also impact on important aspects such as pH and membrane

potential [39]. Indeed, K+ transporter mutants in several bacterial

species, including Mtb, have been reported to be attenuated in

colonization of their host [40,41]. We propose that further study of

common ions and their possible role as environmental signals for

microbes will yield many more as yet undiscovered aspects of the

bacterial-host interface.

Materials and Methods

Ethics statement
All animal procedures were conducted in strict compliance with

the National Institutes of Health ‘‘Guide for the Care and Use of

Laboratory Animals’’. The animal protocol was reviewed and

approved (protocol number 2011-0086) by the Institutional

Animal Care and Use Committee, Cornell University, under the

guidelines of the Association for Assessment and Accreditation of

Laboratory Animal Care, US Department of Agriculture, and the

Public Health Service guidelines for the care and use of animals as

attested by the National Institutes of Health. All efforts were made

to minimize suffering.

Cell culture
Bone marrow-derived MØs were isolated from C57BL/6J WT

mice (Jackson Laboratories), and maintained in DMEM (Corning

cellgro) containing 10% FBS (Thermo Scientific), 20% L-cell

conditioned media, 2 mM L-glutamine, 1 mM sodium pyruvate

and antibiotics (penicillin/streptomycin) (Corning cellgro), at 37uC
in a 7% CO2 atmosphere. Monocytes isolated from peripheral

blood mononuclear cells (Elutriation Core Facility, University of

Nebraska Medical Center) were grown in DMEM containing 10%

human serum (SeraCare Life Sciences), 2 mM L-glutamine,

1 mM sodium pyruvate and antibiotics, and allowed to fully

differentiate into MØs before use in assays.

Cl2 measurement assays
Generation of Cl2 and Cl2/pH sensor beads are described in

the Supplementary Materials and Methods. For plate reader

assays, 26105 MØs/well were seeded in a 96-well black plate

(Corning Costar), and for confocal live-cell time-lapse microscopy

assays, 46105 MØs/well were seeded in a Lab-Tek II 8-

chambered coverglass (Nalge Nunc International). MØs were

washed 3x with pre-warmed assay buffer (PBS, pH 7.2, 5% FBS,

5 mM dextrose, 1 mM calcium acetate, 1.35 mM K2SO4,

0.5 mM MgSO4), and sensor beads added at ,2–5 beads/MØ

in assay buffer. Acquisition of data on a plate reader or by confocal

imaging was initiated within 2–3 minutes of bead addition. A

Molecular Devices Gemini EM fluorescence plate reader was used

for bottom read signal detection (BAC – Ex. 365 nm/Em.

505 nm, AF594 – Ex. 590 nm/Em. 617 nm, pHrodo – Ex.

560 nm/Em. 585 nm), with 4 replicate wells/condition, and

temperature control at 37uC. In experiments to establish a

calibration curve, at the end of the assay (2 hrs) described above,

the MØs were washed 3x with pre-warmed Cl2-free buffer

(1.54 mM KH2PO4, 2.71 mM Na2HPO4, 69 mM Na2SO4,

5 mM dextrose, 1 mM calcium acetate, 1.35 mM K2SO4,

0.5 mM MgSO4), and then placed in buffer supplemented with

specific [NaCl], 200 nM bafilomycin A1 (Sigma), 10 mM nigericin

(Calbiochem), and 10 mM monensin (Enzo Life Sciences). After

incubation to allow equilibration, the BAC and AF594 fluores-

cence signals were read on a plate reader as above.

For live-cell time-lapse microscopy, cells were imaged with a

Leica SP5 confocal, equipped with a stage enclosed temperature

control system. A 364 nm laser line was used for excitation of BAC

fluorescence, a 594 nm laser line for Alexa Fluor 594 fluorescence,

and a 543 nm line for pHrodo. Emission detection was set at +/

215 nm of the peak emission l in each case. 10 z-slices over a

12 mm range were acquired at each time point, using the Leica

Application Suite Advanced Fluorescence program. Volocity

software (PerkinElmer) was used for analysis and tracking of

individual beads.

Mtb strains and culture
The Mtb strain CDC1551 was the parental strain for all in vitro

and MØ infection experiments. Strains used in mice infections

were in the Erdman strain background. Routine culture of Mtb

was as previously described [24]. The phoP::Tn mutant was from

BEI (#NR-14776), and has been previously described [24].

Details of the construction of a CDC1551 DphoPR mutant and its

complemented strain are described in the Supplementary Mate-

rials and Methods.

Microarray and qRT-PCR analyses
Log-phase Mtb (OD600,0.6) was used to seed 10 ml cultures at

OD600 = 0.3 in 7H9 media buffered at pH 7.0, +/2250 mM

NaCl, in standing vented T-25 flasks. RNA samples were collected

after 4 hours of treatment, and five biological replicates were

tested. RNA isolation, amplification, labeling and analyses by

microarrays were carried out as previously described [5]. This

microarray dataset is available in the ArrayExpress database under

accession number E-MTAB-1374, and on the TB Database

website [42]. qRT-PCR experiments were conducted on cDNA

generated from amplified RNA as previously described [24].

Fluorescent reporter Mtb strains and in vitro assays
To generate CDC1551(rv2390c’::GFP), a 704 bp region imme-

diately upstream of rv2390c was PCR amplified, placed in front of

GFPmut2 [43] in a modified replicating plasmid pSE100 [24], and

transformed into CDC1551. The rv2390c’::GFP, smyc’::mCherry

reporter strain was constructed by cloning of rv2390c’::GFP into

the replicating plasmid pCherry3 [25], and transformation into

CDC1551 or Erdman. To construct the Erdman(hspX’::GFP,

smyc’::mCherry) reporter, a 558 bp region upstream of the hspX

start codon was PCR amplified and cloned upstream of GFPmut2

in the pSE100 vector. The hspX’::GFP fusion was then subcloned

into the pCherry3 plasmid and transformed into Erdman.

Selection in all cases was carried out on 7H10 agar containing

50 mg/ml hygromycin.

For broth assays, Mtb was grown in standing vented T-25 flasks,

in 10 ml 7H9 medium buffered at specified pH, with addition of

NaCl or other compounds as stated for each experiment. pH 7.0
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medium was buffered with 100 mM MOPS, while pH 5.5–6.5

media were buffered with 100 mM MES. Appropriate antibiotics

were added as necessary. NO assays were done in stirred, aerated,

cultures and used the NO donor DETA NONOate (Cayman

Chemicals) at 100 mM. Hypoxia experiments were conducted in

50 ml culture volumes in 125 ml duo-capped Erlenmeyer flasks

(BD Biosciences) with stirring using a magnetic stir bar. Cultures

were placed in a hypoxia chamber with adjustable O2 and CO2

controls (BioSpherix), set on a magnetic stirrer within a 37uC
incubator. CO2 was set at 7%, while O2 levels were adjusted as

required. For all in vitro assays, samples were fixed with 4%

paraformaldehyde and GFP fluorescence read on a BD FACS

LSR II. FACS data were analyzed using FloJo (Tree Star, Inc).

Macrophage infections
Infection of murine bone marrow-derived MØs with Mtb were

carried out as previously described [24]. Where needed, MØs

were activated by treatment with 100 U/ml IFNc and 10 ng/ml

LPS. For infection with CDC1551(rv2390c’::GFP, smyc’::mCherry)

pre-induced with Cl2, the bacteria were grown in the presence of

250 mM NaCl for 6 days prior to MØ infection. Bacteria were at

log-phase when MØs were infected. Samples were fixed, imaged

and analyzed by confocal microscopy as described below.

Mouse Mtb infections
All animal experiments were carried out in accordance with

NIH guidelines, and with the approval of the Institutional Animal

Care and Use Committee of Cornell University. C57BL/6J WT

mice and their isogenic IFNc2/2 derivatives (Jackson Laborato-

ries) were infected with 103 CFU of Erdman(rv2390c’::GFP,

smyc’::mCherry) or Erdman(hspX’::GFP, smyc’::mCherry) via an

intranasal delivery method. This was accomplished by lightly

anesthetizing the mice with isoflurane and administering the

bacterial inoculum in a 25 ml volume onto both nares. At sacrifice,

the lungs were removed and fixed in 4% paraformaldehyde

overnight.

Confocal immunofluorescence microscopy
For MØ infections, Mtb infected cells on glass coverslips were

fixed overnight at indicated time points with 4% paraformalde-

hyde. Nuclei were visualized with DAPI (Invitrogen). For mouse

infections, whole lung lobes were fixed overnight with 4%

paraformaldehyde, and stored in PBS prior to processing. Details

of sample processing and antibodies used for confocal microscopy

imaging are described in the Supplementary Materials and

Methods. Samples were imaged with a Leica SP5 confocal

microscope, and z-stacks reconstructed into 3D using Volocity

software. For quantification of reporter Mtb signal, the fluores-

cence voxel volume of each bacterium was measured via the

mCherry channel, with the corresponding sum of the GFP signal

for that bacterium simultaneously measured. Settings for the GFP

channel were maintained during imaging of samples within

experimental sets to allow comparison of values. At least 100

bacteria were quantified for each condition. Statistical differences

between data sets were determined by a non-parametric Mann-

Whitney test.

Supporting Information

Text S1 Text S1 contains supplemental Materials and
Methods, supplemental figures and legends, and the
supplemental video legends.

(PDF)

Video S1 Time-lapse of murine bone-marrow derived
MØ phagocytosis of BAC/AF594 beads. Time-lapse movie

showing phagocytosis of BAC/AF594 beads. BAC (green)/AF594

(red) beads were added to murine bone-marrow derived MØs and

imaged every 2 minutes for 60 minutes. 10 z-sections were imaged

at each time point, and merged. The movie is compressed into

3 seconds.

(MOV)

Video S2 Time-lapse of BAC/AF594 beads in media
alone. Time-lapse movie of BAC/AF594 beads in media alone.

BAC (green)/AF594 (red) beads were placed in assay buffer and

subjected to the same number of exposures as the MØ

phagocytosis experiment in Video S1. The movie is compressed

into 3 seconds.

(MOV)

Video S3 Time-lapse of murine bone-marrow derived
MØ phagocytosis of BAC/pHrodo beads. Time-lapse

movie showing phagocytosis of BAC/pHrodo beads. BAC

(green)/pHrodo (red) beads were added to murine bone-marrow

derived MØs and imaged every 2 minutes for 60 minutes. 10 z-

sections were imaged at each time point, and merged. The movie

is compressed into 3 seconds.

(MOV)

Video S4 Time-lapse of BAC/pHrodo beads in media
alone. Time-lapse movie of BAC/pHrodo beads in media alone.

BAC (green)/pHrodo (red) beads were placed in assay buffer and

subjected to the same number of exposures as the MØ

phagocytosis experiment in Video S3. The movie is compressed

into 3 seconds.

(MOV)
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