2,696 research outputs found
The angular dependent magnetoresistance in alpha-(BEDT-TTF)_2KHg(SCN)_4
In spite of extensive experimental studies of the angular dependent
magnetoresistance (ADMR) of the low temperature phase (LTP) of
alpha-(BEDT-TTF)_2KHg(SCN)_4 about a decade ago, the nature of LTP remains
elusive. Here we present a new study of ADMR of LTP in alpha-(ET)_2 salts
assuming that LTP is unconventional charge density wave (UCDW). In the presence
of magnetic field the quasiparticle spectrum in UCDW is quantized, which gives
rise to striking ADMR in UCDW. The present model appears to account for many
existing ADMR data of alpha-(BEDT-TTF)_2KHg(SCN)_4 remarkably well.Comment: 6 pages, 4 figure
Genes for blood pressure: an opportunity to understand hypertension
Hypertension (HTN) is quantitatively the major cardiovascular risk factor and responsible for ∼50% of cardiovascular morbidity and mortality. Blood pressure (BP) is also a classical complex genetic trait with heritability estimates of 30-50%. Although much is known about BP regulation, the intrinsic origin of essential HTN remains obscure although many environmental factors are known. Analyses of rare monogenic syndromes of HTN have focused attention on pathways that involve renal sodium handling, and steroid hormone metabolism including the mineralocorticoid receptor activity. The genetic basis of common essential HTN on the other hand is only just becoming accessible through high-throughput approaches. Unbiased genome-wide analyses of BP genomics have identified 43 genetic variants associated with systolic, diastolic BP, and HTN. It is highly likely based on current findings that there are hundreds of such loci with small effects on BP, opening a perspective on the genetic architecture of BP that was unknown before. It is our hope that the knowledge of these and further loci will lead to improved understanding of BP pathophysiology and to the identification of new targets for drug therap
Recent developments in the determination of the amplitude and phase of quantum oscillations for the linear chain of coupled orbits
De Haas-van Alphen oscillations are studied for Fermi surfaces (FS)
illustrating the model proposed by Pippard in the early sixties, namely the
linear chain of orbits coupled by magnetic breakdown. This FS topology is
relevant for many multiband quasi-two dimensional (q-2D) organic metals such as
-(BEDT-TTF)Cu(NCS) and
-(BEDT-TTF)CoBr(CHCl) which are considered in
detail. Whereas the Lifshits-Kosevich model only involves a first order
development of field- and temperature-dependent damping factors, second order
terms may have significant contribution on the Fourier components amplitude for
such q-2D systems at high magnetic field and low temperature. The strength of
these second order terms depends on the relative value of the involved damping
factors, which are in turns strongly dependent on parameters such as the
magnetic breakdown field, effective masses and, most of all, effective
Land\'{e} factors. In addition, the influence of field-dependent Onsager phase
factors on the oscillation spectra is considered.Comment: arXiv admin note: text overlap with arXiv:1304.665
Unconventional charge density wave in the organic conductor alpha-(BEDT-TTF)_2KHg(SCN)_4
The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known
for its surprising angular dependent magnetoresistance (ADMR), which has been
studied intensively in the last decade. However, the nature of the LTP has not
been understood until now. Here we analyse theoretically ADMR in unconventional
(or nodal) charge density wave (UCDW). In magnetic field the quasiparticle
spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The
present model accounts for many striking features of ADMR data in
alpha-(BEDT-TTF)_2KHg(SCN)_4.Comment: 5 pages, 6 figure
The state of neurocritical care fellowship training and attitudes toward accreditation and certification: A survey of neurocritical care fellowship program directors
Marginally scientific? Genetic testing of children and adolescents for lifestyle and health promotion
Abstract not availableTimothy Caulfield, Pascal Borry, Maeghan Toews, Bernice S. Elger, Henry T. Greely and Amy McGuir
Evolution of forced shear flows in polytropic atmospheres: A comparison of forcing methods and energetics
Shear flows are ubiquitous in astrophysical objects including planetary and stellar interiors, where their dynamics can have significant impact on thermo-chemical processes. Investigating the complex dynamics of shear flows requires numerical calculations that provide a long time evolution of the system. To achieve a sufficiently long lifetime in a local numerical model the system has to be forced externally. However, at present, there exist several different forcing methods to sustain large-scale shear flows in local models. In this paper we examine and compare various methods used in the literature in order to resolve their respective applicability and limitations. These techniques are compared during the exponential growth phase of a shear flow instability, such as the Kelvin-Helmholtz (KH) instability, and some are examined during the subsequent non-linear evolution. A linear stability analysis provides reference for the growth rate of the most unstable modes in the system and a detailed analysis of the energetics provides a comprehensive understanding of the energy exchange during the system's evolution. Finally, we discuss the pros and cons of each forcing method and their relation with natural mechanisms generating shear flows
On the Relationship Between the Critical Temperature and the London Penetration Depth in Layered Organic Superconductors
We present an analysis of previously published measurements of the London
penetration depth of layered organic superconductors. The predictions of the
BCS theory of superconductivity are shown to disagree with the measured zero
temperature, in plane, London penetration depth by up to two orders of
magnitude. We find that fluctuations in the phase of the superconducting order
parameter do not determine the superconducting critical temperature as the
critical temperature predicted for a Kosterlitz--Thouless transition is more
than an order of magnitude greater than is found experimentally for some
materials. This places constraints on theories of superconductivity in these
materials.Comment: 5 pages, 1 figur
Polymorphisms in the WNK1 gene are asociated with blood pressure variation and urinary potassium excretion
WNK1 - a serine/threonine kinase involved in electrolyte homeostasis and blood pressure (BP) control - is an excellent candidate gene for essential hypertension (EH). We and others have previously reported association between WNK1 and BP variation. Using tag SNPs (tSNPs) that capture 100% of common WNK1 variation in HapMap, we aimed to replicate our findings with BP and to test for association with phenotypes relating to WNK1 function in the British Genetics of Hypertension (BRIGHT) study case-control resource (1700 hypertensive cases and 1700 normotensive controls). We found multiple variants to be associated with systolic blood pressure, SBP (7/28 tSNPs min-p = 0.0005), diastolic blood pressure, DBP (7/28 tSNPs min-p = 0.002) and 24 hour urinary potassium excretion (10/28 tSNPs min-p = 0.0004). Associations with SBP and urine potassium remained significant after correction for multiple testing (p = 0.02 and p = 0.01 respectively). The major allele (A) of rs765250, located in intron 1, demonstrated the strongest evidence for association with SBP, effect size 3.14 mmHg (95%CI:1.23–4.9), DBP 1.9 mmHg (95%CI:0.7–3.2) and hypertension, odds ratio (OR: 1.3 [95%CI: 1.0–1.7]).We genotyped this variant in six independent populations (n = 14,451) and replicated the association between rs765250 and SBP in a meta-analysis (p = 7×10−3, combined with BRIGHT data-set p = 2×10−4, n = 17,851). The associations of WNK1 with DBP and EH were not confirmed. Haplotype analysis revealed striking associations with hypertension and BP variation (global permutation p10 mmHg reduction) and risk for hypertension (OR<0.60). Our data indicates that multiple rare and common WNK1 variants contribute to BP variation and hypertension, and provide compelling evidence to initiate further genetic and functional studies to explore the role of WNK1 in BP regulation and EH
Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration
AIMS: To evaluate the associations of emergent genome-wide-association study-derived coronary heart disease (CHD)-associated single nucleotide polymorphisms (SNPs) with established and emerging risk factors, and the association of genome-wide-association study-derived lipid-associated SNPs with other risk factors and CHD events. METHODS AND RESULTS: Using two case–control studies, three cross-sectional, and seven prospective studies with up to 25 000 individuals and 5794 CHD events we evaluated associations of 34 genome-wide-association study-identified SNPs with CHD risk and 16 CHD-associated risk factors or biomarkers. The Ch9p21 SNPs rs1333049 (OR 1.17; 95% confidence limits 1.11–1.24) and rs10757274 (OR 1.17; 1.09–1.26), MIA3 rs17465637 (OR 1.10; 1.04–1.15), Ch2q36 rs2943634 (OR 1.08; 1.03–1.14), APC rs383830 (OR 1.10; 1.02, 1.18), MTHFD1L rs6922269 (OR 1.10; 1.03, 1.16), CXCL12 rs501120 (OR 1.12; 1.04, 1.20), and SMAD3 rs17228212 (OR 1.11; 1.05, 1.17) were all associated with CHD risk, but not with the CHD biomarkers and risk factors measured. Among the 20 blood lipid-related SNPs, LPL rs17411031 was associated with a lower risk of CHD (OR 0.91; 0.84–0.97), an increase in Apolipoprotein AI and HDL-cholesterol, and reduced triglycerides. SORT1 rs599839 was associated with CHD risk (OR 1.20; 1.15–1.26) as well as total- and LDL-cholesterol, and apolipoprotein B. ANGPTL3 rs12042319 was associated with CHD risk (OR 1.11; 1.03, 1.19), total- and LDL-cholesterol, triglycerides, and interleukin-6. CONCLUSION: Several SNPs predicting CHD events appear to involve pathways not currently indexed by the established or emerging risk factors; others involved changes in blood lipids including triglycerides or HDL-cholesterol as well as LDL-cholesterol. The overlapping association of SNPs with multiple risk factors and biomarkers supports the existence of shared points of regulation for these phenotypes
- …
