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ABSTRACT

Shear flows are ubiquitous in astrophysical objects including planetary and stellar interiors,
where their dynamics can have significant impact on thermo-chemical processes. Investigat-
ing the complex dynamics of shear flows requires numerical calculations that provide a long
time evolution of the system. To achieve a sufficiently long lifetime in a local numerical model
the system has to be forced externally. However, at present, there exist several different forc-
ing methods to sustain large-scale shear flows in local models. In this paper we examine and
compare various methods used in the literature in order to resolve their respective applicabil-
ity and limitations. These techniques are compared during the exponential growth phase of a
shear flow instability, such as the Kelvin-Helmholtz (KH) instability, and some are examined
during the subsequent non-linear evolution. A linear stability analysis provides reference for
the growth rate of the most unstable modes in the system and a detailed analysis of the en-
ergetics provides a comprehensive understanding of the energy exchange during the system’s
evolution. Finally, we discuss the pros and cons of each forcing method and their relation with
natural mechanisms generating shear flows.

Key words: methods: numerical – stars: interiors – hydrodynamics – instabilities – turbu-
lence.

1 INTRODUCTION

The relative difficulty of observing most astrophysical shear re-

gions, such as those in the Sun, in detail makes it imperative to use

analytical and numerical techniques to shed light on the motions

present there. Global-scale numerical calculations of stellar inte-

rior dynamics is one approach to investigate the mechanisms main-

taining differential rotation (Brun & Toomre 2002; Miesch et al.

2008). However, by using a global approach, such models can not

resolve a large range of length-scales in its entirety and have to rely

on artificially large transport coefficients or subgrid-scale models.

Therefore, numerical investigations using a local approach, where

only a small fraction of the object is simulated, can help to provide

a more detailed description of the region of interest.

Previous studies of astrophysical flows looked at an assortment of

different velocity profiles, depending on the problem and choice of

boundary conditions. In the case of Keplerian motion, which is in-

vestigated in the context of accretion discs, usually a linear velocity

profile is assumed (e.g. Brandenburg et al. 1995; Hawley, Balbus

& Winters 1999; Dubrulle et al. 2005; Silvers 2008). This type of

shear profile does not require an external force to balance viscous

⋆ E-mail:Veronika.Witzke.1@city.ac.uk (VW); Lara.Silvers.1@city.ac.uk

(LJS); Favier@irphe.univ-mrs.fr (BF)

dissipation and instead they incorporate the velocity via a shearing-

box approach (Goldreich & Lynden-Bell 1965; Narayan, Goldreich

& Goodman 1987), where the velocity is instantaneously present.

In contrast, some investigations of stellar shear flows have used

polynomial functions, as for example in Tobias & Hughes (2004)

and Cline, Brummell & Cattaneo (2003a) while other investiga-

tions have utilized trigonometric functions to model the velocity

field (see, for example, Hughes & Proctor 2013; Cline, Brummell

& Cattaneo 2003b). Such velocity profiles have a non-vanishing

gradient at the boundaries. In order to minimise the effect of the

boundaries on the shear layer a hyperbolic tangent profile can be

used (see for example Brüggen & Hillebrandt 2001; Hughes & To-

bias 2001; Vasil & Brummell 2008).

Hyperbolic tangent profiles are commonly used in classical stud-

ies of Kelvin-Helmholtz instability and turbulence. However, most

local numerical studies of the turbulence transition in shear flows

take the approach of an unforced flow (Caulfield & Peltier 2000;

Smyth & Moum 2000; Smyth & Winters 2003), which results in a

finite lifetime of an initially unstable background state due to its in-

evitable viscous decay. However, astrophysical shear flows can be

either transient features or be sustained over very long time-scales,

where the physical mechanism maintaining the shear flow is usu-

ally unknown. Incorporating a forcing into the numerical model

has therefore two roles first to sustain the initial state, for which

a linear stability analysis can be carried out, and second to model
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the unknown physical processes responsible for the resulting flow

in an astrophysical system. A variety of classical studies of shear

driven turbulence exploit a method where a decoupled background

shear flow is present (for example used by Holt, Koseff & Ferziger

1992; Jacobitz, Sarkar & van Atta 1997; Barker et al. 2012). This

method requires a change of variables to incorporate a mean shear

profile and does not allow for a back-reaction of the actual flow

on the forcing. Whereas investigations of astrophysical shear flows

exploit different methods to provide a sustained flow. For exam-

ple in Miesch (2003), Vasil & Brummell (2008), and Silvers et al.

(2009) a method to balance viscous dissipation by introducing an

external force proportional to the viscous term is utilized. Another

option that has been selected is the relaxation method (e.g. Prat

& Lignières 2013), which incorporates an external force propor-

tional to the difference between the actual velocity profile and the

target shear profile. Furthermore, studies focusing on magnetohy-

drodynamical instabilities used forced shear flows in order to study

magnetic buoyancy and its relevance to the formation of sunspots

(Tobias & Hughes 2004; Brummell, Cline & Cattaneo 2002). To

understand the role of a shear flow for magnetic field generation,

several investigations on the interaction between a shear flow and

initial weak structured magnetic fields have been conducted (Vasil

& Brummell 2008; Miesch, Gilman & Dikpati 2007; Heifetz et al.

2015). In all cases however, the influence of the forcing method

used on the evolution of the system has not been studied.

In this paper, a comparative analysis of different forcing methods

is performed to understand how different forcings affect the non-

linear evolution of the KH instability. The governing equations are

given in Sec. 2 along with the formulation of the forcing methods

and numerical methods used. Our comparison of the different forc-

ing methods is presented in Sec 3, where the exponential growth

regime is compared in Sec. 3.1 and the non-linear phase is pre-

sented in Sec. 3.2.

2 THREE-DIMENSIONAL MODEL

Although a linear stability analysis is a powerful tool to investi-

gate possible instabilities of shear flows in stellar environment as

previously studied in Witzke et al. (2015), understanding the com-

plex dynamics requires three-dimensional non-linear calculations.

In order set up a system that initially remains comparable to a lin-

ear stability problem, which has a non-evolving background state,

external forcing is needed. The force aims to maintain the initial

conditions corresponding to the equilibrium state as long as non-

linear effects are negligible. Our purpose is to investigate whether

different forcing methods provide a temporally evolving system,

which shows the predicted linear evolution, and in what respect the

non-linear evolution depend on the method used.

2.1 Governing equations, boundary conditions, and

background state

We consider a three-dimensional domain of depth d, bounded by

two horizontal planes located at z = 0 and z = 1, and periodic

in both horizontal directions. The fluid is assumed to be an ideal

monatomic gas with the adiabatic index γ = cp/cv = 5/3 and con-

stant dynamic viscosity µ, constant thermal conductivity κ, constant

heat capacities cp at constant pressure, and cv at constant volume.

The set of dimensionless differential equations we consider is:

∂ρ

∂t
= −∇· (ρu) (1)

∂(ρu)

∂t
= σCk

(

∇2u +
1

3
∇(∇·u)

)

− ∇· (ρuu)

−∇p + θ(m + 1)ρ ẑ + F (2)

∂T

∂t
=

Ckσ(γ − 1)

2ρ
|τ|2 +

γCk

ρ
∇2T

−∇· (T u) − (γ − 2)T∇·u (3)

where ρ is the density, u the velocity field, T the temperature, θ

denotes the uniform temperature gradient across the layer, and p

is the pressure. In the dimensionless equations above, all lengths

are given in units of the domain depth d. The temperature and den-

sity are recast in units of Tt and ρt, the temperature and density at

the top of the layer, and we take the sound-crossing time, which is

given by t̃ = d/[(cp − cv)Tt]
1/2, as the reference time. There are two

dimensionless numbers in the set of equations above: the Prandtl

number, σ = µcp/κ, which is the ratio of viscosity to thermal con-

ductivity and the thermal dissipation parameter Ck = κτ/(ρtcpd).

The strain rate tensor in equation (3) has the form

τi j =
∂u j

∂xi

+
∂ui

∂x j

− δi j

2

3

∂uk

∂xk

. (4)

A force term F in equation (2) aims to model external forces re-

sulting from large-scale global effects (such as Reynold stresses

associated with thermal convection in global-scale calculations for

example) not included in our local approach. This force can sustain

a shear flow when needed and is set to zero otherwise. The different

forcings that we will consider are described in Section 2.2.

For the basic state a polytropic relation between pressure and den-

sity is taken. Due to the Schwarzschild criterion the fluid is stable

against convection if the inequality m > 1/(γ − 1) = 1.5 holds. In

this paper the polytropic index m is always chosen such that the

atmosphere is stably stratified. The boundary conditions at the top

and the bottom of the domain are impermeable and stress-free ve-

locity and fixed temperature:

uz =
∂ux

∂z
=
∂uy

∂z
= 0 at z = 0 and z = 1, (5)

T = 1 at z = 0 and T = 1 + θ at z = 1. (6)

The dimensionless initial temperature and density profiles are of

the form:

T (z) = (1 + θz) (7)

ρ(z) = (1 + θz)m . (8)

This basic state corresponds to an equilibrium state if the fluid is at

rest.

In order to obtain a shear driven turbulent regime it is necessary to

start with an unstable velocity profile. A hyperbolic tangent profile

is assumed in order to model a localised shear layer in the middle or

our domain that will minimize the effects of the boundaries. There-

fore, we assume that an external force sustains the following initial

background velocity profile

U0 = (u0(z), 0, 0)T = U0 tanh

(

z − 0.5

Lu

)

êx (9)

with a shear amplitude U0 and a scaling factor 1/Lu that controls

the width of the shear profile. The boundary conditions introduced

in equation (5) restrict the shear profile to values of Lu which will

result in a low enough value of the z-derivative at the boundaries.

Using this velocity profile the above basic state can still be regarded

as an equilibrium state if viscosity is neglected. Some shear profiles

for different widths are illustrated in Fig. 1.
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Figure 1. Plots of initial shear flow profiles. Shear flow profiles with dif-

ferent Lu parameter, but with the same amplitude U0 = 1 are plotted. The

z-axis corresponds to the vertical dimension.

Our calculations are initialized by adding a small random tem-

perature perturbation to the equilibrium state including the addi-

tional shear flow given by equation (9). In order to evolve the

system in time equations (1) - (3) are solved by using a hybrid

finite-difference/pseudo-spectral code (see for example Matthews,

Proctor & Weiss 1995; Silvers, Bushby & Proctor 2009; Favier &

Bushby 2012, 2013, and references therein). For the linear stability

calculations, the eigenvalue-problem formulated in Witzke et al.

(2015) is numerically solved on a one-dimensional grid in the z-

direction that is discretised uniformly, and this method is adapted

from Favier et al. (2012).

When using direct numerical calculations to solve the system nu-

merically over considerable iterations an issue concerning the mo-

mentum conversation might appear, which is specific to the choice

of stress-free boundary conditions (see discussion in Jones et al.

2011). Despite the fact that equation (2) together with the bound-

ary conditions in equation (5) conserves the momentum a cumu-

lative effect of truncation errors at each time step might lead to an

unphysical change in momentum when integrating over a vast num-

ber of time steps. We have checked that both momentum and mass

is indeed conserved for all the calculations presented in this paper.

2.2 Forcing methods

We will compare three different methods to sustain an initial shear

flow where we distinguish between methods that are static, i.e. the

force term does not change throughout the calculation, and dy-

namic forcing methods that might vary depending on the current

flow. Furthermore, methods with a force applied to a localised re-

gion have a local force whereas for global forcing methods the force

term applies on the whole domain. The main goal is to find a forc-

ing method that does not significantly alter the characteristics of

the linear phase of the evolution but allows to reach a quasi-steady

non-linear state.

2.2.1 Viscous method

In order to balance the viscous dissipation associated with the ini-

tial shear flow profile given by equation (9) the force

F = −σCk∇
2U0 (10)

is added to the RHS of equation (2). By applying this viscous forc-

ing the initial state given by equations (7) - (9) is in equilibrium

provided that viscous heating is neglected. This method has been

broadly applied in forced shear flows to model the dynamics of the

solar tachocline (e.g. Miesch 2003; Silvers et al. 2009). Note that

this method only balances for the viscous diffusion of momentum

associated with the target profile and does not depend on the actual

non-linear solution. In that sense, the forcing can be considered to

be local and static.

2.2.2 Perturbation method

Our second method, the perturbation method, was previously used

by Holt et al. (1992); Jacobitz et al. (1997); Barker et al. (2012).

For this method a slightly different set of differential equations is

solved. A decomposition of the velocity, u = U0 + ũ into a back-

ground shear flow, U0, and the deviation from the background pro-

file ũ enables the maintenance of a shear flow that is independent

of the unstable perturbations. Note, the background velocity profile

U0 has to be time independent and divergence free. Thus, insert-

ing the above decomposition into the momentum equation (2) we

obtain

ρ
∂

∂t
(ũ + U0) = −∇p + θ(m + 1)ρ ẑ − ρ (ũ + U0) ·∇ (ũ + U0)

+σCk

[

∇2 (ũ + U0) +
1

3
∇∇· (ũ + U0)

]

, (11)

since we assume that our background profile does not vary with

time and in the flow direction, the time derivative of U0 and the term

U0·∇U0 vanish. In order to ensure that the background velocity is

not dissipated by viscosity the viscous term associated with it is

dropped. The equation takes the form

ρ
∂ũ

∂t
= −∇p + θ(m + 1)ρ ẑ − ρũ·∇U0 − ρU0·∇ũ

+σCk

(

∇2ũ +
1

3
∇(∇·ũ)

)

, (12)

such that effectively the differential equation for the velocity per-

turbations only is solved. Here, the velocity perturbations, ũ, are

initially zero, but the background velocity is incorporated through

the two advective terms involving U0. By the same procedure the

equations (1) and (3) become:

∂ρ

∂t
= −∇· (ρũ) − U0·∇ρ (13)

∂T

∂t
=

Ckσ(γ − 1)

2ρ
|τ|2 +

Ckσ(γ − 1)

2ρ

∂2U0

∂z2
+
γCk

ρ
∇2T

−∇· (T ũ) − (γ − 2)T∇· ũ − U0·∇T, (14)

where the effect of the background velocity, U0, on the density and

temperature is taken into account. Mathematically, the equations

for U0 + ũ are the same as for u in the viscous method. Therefore,
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Table 1. Comparing the linear eigenvalue-solver results with those from

non-linear calculations during the linear phase. For case I the shear am-

plitude is U0 = 0.08 and 1/Lu = 118 such that Ri = 8 × 10−4. Taking

Ck = 8 × 10−5 results in a Pe = 34. For case II U0 = 0.041, 1/Lu = 20 and

Ck = 1 × 10−4 such that Ri = 0.1 and Pe = 82.

Method: ζr kmax Effective 1/Lu

Case I:

EV-solver (119 ± 0.5) × 10−2 42.5 ± 1 118

unforced (30 ± 1) × 10−2 14.1 ± 1.6 51 ± 2

1 (110 ± 5) × 10−2 33.0 ± 1.6 105 ± 5

2 (110 ± 5) × 10−2 33.0 ± 1.6 106 ± 6

3 (τ0 = 10) (45 ± 3) × 10−2 14.1 ± 1.6 37 ± 2

3 (τ0 = 1.0) (80 ± 3) × 10−2 31.4 ± 1.6 73 ± 3

3 (τ0 = 0.1) (105 ± 5) × 10−2 33.0 ± 1.6 105 ± 5

3 (τ0 = 0.01) (110 ± 5) × 10−2 33.0 ± 1.6 104 ± 3

Case II:

EV-solver (53 ± 0.5) × 10−3 10.6 ± 0.1 20

unforced −0.01 not applicable not applicable

1 (47 ± 8) × 10−3 9.4 ± 1.6 19 ± 1

2 (47 ± 8) × 10−3 9.4 ± 1.6 19 ± 1

3 (τ0 = 0.01) (48 ± 8) × 10−3 9.4 ± 1.6 19.8 ± 0.3

both methods should give the same solutions, even if the approach

and numerical implementation are significantly different.

2.2.3 Relaxation method

In the relaxation method, an external force ensures that the flow

relaxes towards the initial profile on an arbitrary time-scale τ0. We

define any quantity f̄ as

f̄ (z) =
1

NxNy

Nx∑

i=1

Ny∑

j=1

f (i, j, z), (15)

where the overbar denotes that the quantity f is horizontally av-

eraged, and Nx and Ny are the resolutions in x-direction and in y-

direction respectively. The force for the relaxation method in the

momentum equation depends on the horizontally averaged velocity

ūx(z) and is given by

F =
ρ

τ0

(U0 − ūx(z) êx) , (16)

where êx is the unit vector in x-direction. For this method it is cru-

cial to ensure that the forcing is aligned with the flow direction and

does not depend on the velocity variation along this horizontal di-

rection, which would otherwise correspond to a local small-scale

force. A local forcing should be avoided, because it will suppress

any instability and can lead to non-physical behaviour. The relax-

ation method was used by Prat & Lignières (2013) to model shear

driven turbulence and provides the advantage of an adjustable back

reaction on the actual mean flow. It is a global forcing (due to the

averaged operator) and a dynamical forcing, because it depends on

the actual flow.

3 COMPARISON OF THE FORCING METHODS

Investigating saturated flows on long time-scales requires an ex-

ternal force to sustain a target velocity profile. Here we compare

the effects of the different forcings presented in Section 2.2 on the

development of the shear instability. Our investigation is divided

into two parts. We compare the linear regime of a shear instabil-

ity in a two-dimensional framework in Section 3.1 and the non-

linear regime is investigated in Section 3.2 using three-dimensional

calculations. Here we first qualitatively examine two-dimensional

slices and three-dimensional renderings of key quantities for differ-

ent forcing methods in Section 3.2.1, before we calculate the hori-

zontally averaged velocity, turbulent Reynolds numbers and turbu-

lent length in Section 3.2.2. A detailed analysis of the energy bud-

gets is provided in Section 3.2.4, where the theoretical framework

for the energy budgets is introduced in Section 3.2.3. The relation

between the external work done by the forcing and the amount of

dissipated energy by viscosity is analysed in detail in Section 3.2.5

and finally we summarize our findings for the saturated regime in

Section 3.2.6.

3.1 Linear regime

Since the initial linear phase of shear flow instabilities is purely

two-dimensional, which becomes evident from Squire’s theorem

(Squire 1933), we focus here on calculations in a two-dimensional

domain, which has a spatial resolution of Nx = 512 and Nz = 480.

The stability of a shear flow in a stratified atmosphere is charac-

terized by the non-dimensional Richardson number, Ri. Using the

general definition of the Brunt-Väisälä frequency given by

N2(z) =
g

T̃

∂T̃

∂z
, (17)

where T̃ = T (Pt/P)1−1/γ is the potential temperature, the minimum

value of the Richardson number, Ri, across the layer is defined as

Rimin = min
06z61



N(z)2

/(

∂u0(z)

∂z

)2 



= min
06z61





θ2L2
u(m + 1)

(
m+1
γ
− m

)

(1 + θz)
(

U0 − u0(z)2/U0

)2




, (18)

where the derivative of the background velocity profile, defined in

equation (9), with respect to z corresponds to a local turnover rate

of the shear. In most cases the minimum Ri value is at z = 0.5, but

for some parameter choices with large temperature gradient, θ, and

broad shear width the minimum is shifted towards greater z.

Here we consider unstable shear flows with a Richardson number

less than 1/4 at a point in the domain. We do not consider shear

instabilities triggered by thermal diffusion for which larger values

of Ri can be used (Dudis 1974; Zahn 1974; Lignières et al. 1999).

Because the 1/4 criterion is a necessary, but not sufficient, require-

ment for instability we also solve the corresponding linear stability

problem based on the approach used in Witzke et al. (2015) in ad-

dition to conducting the non-linear calculations. For simplicity, the

Prandtl number is fixed to be unity whereas the dimensionless ther-

mal diffusivity Ck is varied from 10−4 to 10−5. Taking the previous

linear study by Witzke et al. (2015) into account, our parameters

satisfy the following requirements: To ensure a stable stratification

the polytropic index is set to be m = 1.6, the amplitude U0 of the

shear flow is chosen such that the Mach number in the middle of

the domain remains less than 0.08, which avoids additional sta-

bilisation by compressible effects. Furthermore, we take the initial

Péclet number, which we define as

Pe =
4U0Lu

Ck

, (19)
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to be much greater than unity to avoid a destabilizing effect caused

by thermal diffusion. Note, that due to the definition of U0 and Lu

in equation (9) a factor of 4 is needed to be consistent with the gen-

erally used definition.

Here we want to compare two linearly unstable cases with distinct

behaviour when no external forcing is included. An unforced case

will decay if the instability grows on a larger time-scale than the

viscous dissipation time-scale. Therefore, we consider two different

cases corresponding to two different minimum Ri values. In case I

we consider a very small value of Ri = 8 × 10−4, such that the sys-

tem is unstable even without external forcing. Case II has a greater

Ri = 0.1 and greater Ck so that the system is unstable only if we in-

troduce an external forcing. Without forcing, the initial shear flow

diffuses quickly such that the Richardson number increases rapidly

above 1/4 and no shear instability can be sustained. By considering

these two different cases, we investigate how the forcing method

used affects the development of a shear instability during the ex-

ponential growth phase. Unforced calculations provide a reference

for the system’s evolution without any external forces. All param-

eters for case I and case II, the resulting linear growth rates, and

the wave number for the most unstable mode for each method are

summarised in Table 1 using both an eigenvalue solver and direct

numerical calculations of unforced and forced cases.

The growth rates for the non-linear calculations are obtained by

calculating

ζr =
d ln< w >

dt
=

1

< w >

d < w >

dt
, (20)

where the angle brackets denotes that any quantity f is volume av-

eraged as follows

< f >=
1

NxNyNz

Nx∑

i=1

Ny∑

j=1

Nz∑

l=1

f (i, j, l). (21)

In addition, we fit horizontally-averaged velocity profiles in the

shear direction with a hyperbolic tangent profile as in equation (9)

to estimate the shear width during the exponential regime. In order

to find the most unstable wave number, which corresponds to the

wave number with the most energy, the kinetic energy spectrum is

calculated as

E(kx) =
1

4

∑

kx

∑

z

û(kx, z)ρ̂u∗(kx, z) + ρ̂u(kx, z)û∗(kx, z), (22)

where the hat symbol denotes the Fourier transform of the corre-

sponding quantity and the star symbol denotes the complex conju-

gate.

The growth rates for the viscous forcing, the perturbation method

and the relaxation method (where τ0 = 0.01) are almost identical

for both case I and II. The growth rates achieved by these meth-

ods in case II correspond to the growth rate calculated by using the

EV-solver with a 12% relative error when taking the growth rate

from the EV-solver as reference. For case I the error is 8%. The

most unstable mode, kmax, in non-linear calculations is the same for

the viscous- and the perturbation method. Note that the most unsta-

ble wave number obtained by DNS is always slightly smaller than

the one obtained from the eigenvalue solver, and more so for case I

than for case II. This is due to a thinner shear width in case I, which

is more affected by viscous dissipation, such that the instability is

triggered when the shear profile is significantly broader. Therefore,

kmax deviates for case I more than for case II, where the initial shear

width is broader.

We now look at the effect of varying the relaxation time-scale τ0 in

the relaxation method. The instability develops always in the mid-

dle of the domain and is visually similar to the instability observed

by using either the viscous- or the perturbation method. The evolu-

tion of < w >, for different τ0 parameters, for case I and case II is

shown in Fig. 2 and the growth rates of these runs are summarised

in Table 1. For all cases the onset of the instability is not sensible to

the chosen relaxation time-scale τ0, but the growth rate decreases

with increasing τ0. This is expected since a smaller τ0 implies a

larger restoring force as soon as the averaged velocity profile dif-

fers from the target equation (9). Therefore, for relaxation times

that are larger the viscous dissipation might be unbalanced such

that the initial state changes before an instability is triggered.

The relaxation method leads either to the same instability or sus-

tains an instability triggered by a smoother velocity profile, when

the relaxation time τ0 is increased. To put τ0 in relation with typ-

ical dynamical times the initial turnover time of the shear flow

ts = Lu/U0 is calculated, which is ts ≈ 0.1 for case I and ts ≈ 1.2

for case II. Furthermore, the initial viscous time-scale, tµ = L2
u/µ,

that accounts for the time on which the initially shear width is dis-

sipated, gives another reference time. For case I the viscous time-

scale is tµ = 0.9 and for case II it is tµ = 25. Note, that both time-

scales represent initial time-scales given by the initial configura-

tion and will change with time as the system evolves, especially

in the saturated regime these times might be significant different

from the initial values. So that a relaxation time greater than both

the viscous and dynamical time-scale corresponds to a very weak

back-reaction of the forcing to the change of the averaged velocity.

Note that τ0 < 1 means that the forcing relaxation is quicker than a

sound crossing time which is unlikely to occur in physical system.

By varying the relaxation times, τ0, we investigate how to chose

an appropriate τ0 with respect to the initial time-scales in order to

recover the linear instability dictated by the initial state and at the

same time a saturated regime that evolves towards a quasi-static

state.

As expected the numerical calculations using the viscous method

and perturbation method lead to exactly the same result, because

both methods are mathematically equivalent. Note however that the

computational cost is slightly greater when using the perturbation

method. In conclusion the viscous and perturbation method are the

same, but the relaxation method shows different dynamics depend-

ing on the relaxation time. If we are to understand which of these

forcing methods is most suitable to model shear flows in stellar

interiors it is essential to conduct a comparison for the non-linear

evolution.

3.2 Non-linear phase

In order to investigate the non-linear evolution of a stratified

shear flow a three-dimensional domain is crucial (Thorpe 1987),

because after a Kelvin-Helmholtz instability three-dimensional

instabilities are triggered (Peltier & Caulfield 2003). These

secondary instabilities lead to a turbulent collapse of horizontal

vortices, which is suppressed in a two-dimensional setup as

discussed by Scinocca (1995). Therefore, to capture the effect of

different forcing methods on the entire dynamics we now focus on

three-dimensional calculations, which have a spatial resolution of

Nx = 256, Ny = 256 and Nz = 360 .

To avoid confinement effects associated with the upper and lower

boundaries, we focus on a case with a temperature gradient θ = 5.

In this case the instability is more likely to remain confined in

a narrow central region as to minimize the importance of our

particular choice of boundaries. The polytropic index is kept the

same as in the previous section to ensure a stable stratification. A
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Figure 2. The time evolution of the volume averaged vertical velocity, as

defined in equation (21), for the two-dimensional calculations for case I in

(a) and for case II in (b). Different τ0 parameters for the relaxation method

are used and compared to the viscous method and unforced calculations.

The vertical velocity is displayed in logarithmic scale and t is given sound-

crossing time.

parameter search was conducted to find combinations of the other

parameters that lead to a finite spread of the unstable region. The

dynamical viscosity is taken of order 10−4 and the Prandtl number,

σ = 0.1, because low Prandtl number flows are more relevant for

stellar interiors. The shear flow amplitude is set to U0 = 0.2 and

we take 1/Lu = 80 such that Rimin = 0.003.

As discussed above, the viscous method and the perturbation

method are equivalent, such that in the following, only results ob-

tained with the viscous method are shown but we have checked that

the calculations are indeed the same when using the perturbation

method. Our study compares the resulting non-linear dynamics

obtained by using the viscous method and the relaxation method.

Furthermore, we discuss the effect of varying τ0 in the relaxation

method and how does it compare with the viscous method, taken

as reference.

3.2.1 Visualisation

In order to compare the flow evolution we start with a visualiza-

tion of the vorticity at three different stages during the non-linear

saturation. The first stage is the exponential growth phase, during

which all forcing methods show a similar evolution, where the layer

with non-zero vorticity spreads vertically. For the viscous forcing

Figure 4. The vertical velocity component w for three different forcing

methods at several sound crossing times after saturation. In (a) the viscous

method is used at t̃ ≈ 40. In (b) the relaxation method is used with τ0 = 10

at t̃ ≈ 40 and in (c) the averaged method is used with τ0 = 0.1 at t̃ ≈ 38.
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Figure 3. The vorticity component perpendicular to the x-z-plane for different forcing methods at two different stages during the time evolution. The plots

at the top (a), (b) show snapshots of two different times for the viscous method, where (a) is at t̃ = 7.2, (b) at t̃ = 40. The middle row (c) and (d) show the

relaxation method with τ0 = 10 at t̃ = 6.8 and t̃ = 40, respectively. In (e) and (f) the relaxation method with τ0 = 0.1 was used, where t̃ = 12.3 in (e) and

t̃ = 38 in (f).

and the relaxation method with τ0 ≪ 1, this layer remains signif-

icantly smaller than for calculations where the relaxation method

with τ0 ∼ O(1) is used. Note that the the viscous time-scale for this

case is tµ ≈ 1.5.

The second stage is chosen at a point when the instability starts to

saturate and the fluid parcels overturn. In Fig. 3 the vorticity com-

ponent perpendicular to the x-z plane for the viscous forcing, the

relaxation method with τ0 = 0.1 and τ0 = 10 for the second and

third stage are plotted in the x-z plane at y=0.8. For the second stage

the dynamics differ between the different forcing methods, which

can be seen in Fig. 3 (a), (c) and (e). In Fig. 3 (a) small patches of

strong positive vorticity are merging together into each other along

a thin horizontal layer and a few small negative vorticity patches

are present. In comparison, when using the relaxation method with

τ0 = 10 large billows of smaller positive vorticity occupy a horizon-

tal layer which is more extended in the vertical direction, see Fig.

3 (c). This can be explained by the smoother shear width, which

is a consequence of the slow back-reaction of the forcing. Using a

smaller τ0 leads to a greater vorticity amplitude than achieved by

the viscous method (see Fig. 3 (a) and (e), note the different color

scales) while the spread of the instability remains similar.

The third stage for the different methods is several sound crossing

times after saturation, where the flow is evolving towards a quasi-

static state. Comparing Fig. 3 (b), where the viscous method is used

with Fig. 3 (d), and Fig. 3 (e), where the relaxation method with

τ0 = 10 and τ0 = 0.1 is used respectively, the main differences

are the vertical extent of the overturning region and the amplitude

of the vorticity. Using a larger τ0 = 10 leads to a similar situation

as for the viscous method which becomes evident when comparing

Fig. 3 (b) and (d). In Fig. 3 (b) the layer is thin and shows elongated
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regions of strong positive vorticity, whereas in Fig. 3 (d) the region

is significantly extended with small patches of strong positive and

negative vorticity. A few larger regions are present further away

from the middle of the domain. For the relaxation method with

τ0 = 0.1 a drastically different behaviour is observed, see Fig. 3 (f),

where the vorticity amplitude is much greater and the region where

overturning is present is taking up almost the entire domain. In ad-

dition, much more small scale turbulence occurs around z = 0.5.

This can be explained by the form of the forcing used: The viscous

method acts with a force, that is confined in a narrow region around

the middle of the domain such that the instability can develop freely

further away from z = 0.5. The relaxation method drives the fluid

towards the target profile even far away from the middle of the do-

main. This supports additional spread of the shear instability and

triggers more turbulent motion. While it is worth mentioning that

for the relaxation method with τ0 = 0.1 due to strong viscous heat-

ing convective motion is present in the upper half of the domain

(which we checked by calculating the Brunt-Väisälä frequency),

this dynamics will not be further discussed, as it is the result of the

artificially low value of τ0 used in that case. Furthermore, we expect

this unrealistic instability to disappear at lower Prandtl numbers.

Fig. 4 shows contour plots of the vertical velocity in three dimen-

sions at approximately 40 sound-crossing times, which is well af-

ter the non-linear saturation. For the viscous method the patches of

downwards and upwards motion form an alternating pattern along

the x-direction where regions of the same velocity are arranged in

small tubes that are extended along the y-direction, see Fig. 4 (a).

Such a pattern is not present in Fig. 4 (b), where the relaxation

method with τ0 = 10 is used. Here, the regions of the same velocity

form larger patches which are extended along the x-direction and

changes sign along the y-direction. This indicates that a secondary

instability which forms overturning billows along the y-direction is

more dominating when the relaxation method with larger values of

τ0 is used. For the relaxation method with τ0 = 0.1, displayed in

Fig. 4 (c), the artificially strong forcing leads to an intense forward

energy cascade and associated small-scale turbulent motions in the

middle of the layer. The large-scale structures observed in the up-

per part of the domain are convective cells resulting from the large

central viscous heating.

When looking at the time evolution along Fig. 3 (a), (b) and the

evolution along Fig. 3 (e), (f) a significant difference in the ampli-

tude of the vorticity can be noticed. While for the viscous method

the amplitude increases towards a peak during the saturation, Fig.

3 (a), and start to decrease afterwards, for the relaxation method

the amplitude of the vorticity constantly increases and reaches a

maximum after saturation, see Fig. 3 (b) and (f). This might be ex-

plained by the form of the forcing: Because the relaxation method

adjusts the magnitude of the force according to the mean flow, the

strength of the force increases constantly and lead to more over-

turning with time, whereas the force remains constant when using

the viscous method, such that the overturning settles down after

saturation. However, in order to check if this is indeed the case a

more detailed analysis on the work done by the force and the total

viscous dissipation is required, which is discussed in Section 3.2.4.

Having compared the non-linear evolution for different forcing

methods qualitatively we can conclude the following. The viscous

method and the relaxation method with τ0 ∼ O(tµ) or larger re-

sult in similar, but still distinct, evolutions. Using a relaxation time

τ0 ≪ tµ but still greater than the dynamic time-scale ts ≈ 0.06

leads to a very different non-linear dynamics with great mixing and

possible non-physical behaviour leading to convection. Therefore,

we conclude that, for the saturated regime, the initial viscous time-
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Figure 5. The turbulent Reynolds number and turbulent length-scales for

three different forcings. In (a) Ret , as defined in equation (23), is plotted

versus z and (b) shows lt , where the red line indicates the horizontal extend

of the domain.

scale, here tµ ≈ 1.5, gives a reference time for the choice of τ0 and

the case with τ0 = 0.1 will be excluded from further analysis.

3.2.2 Horizontally averaged profiles

The system under consideration is stratified, such that most quanti-

ties will change with depth, z, throughout the domain. Therefore,

investigating horizontally averaged profiles with depth provides

further insight in the system dynamics during the saturated regime.

Let us first define a local turbulent Reynolds number as follows

Ret(z) = ρ̄(z)lt(z)urms(z)/(σCk), (23)

where ρ̄(z) is the horizontally averaged density. Here urms(z) is the

root mean square of the fluctuating velocity averaged over the hor-

izontal layers calculated as follows

urms(z) =
1

NxNy

Nx∑

x=1

Ny∑

y=1

√

(u(x, y, z) − U0(z))2, (24)

where U0(z) is the target velocity profile as defined in equation (9).

The turbulent length-scale is taken as

lt(z) = 2π

∫

E(k, z)/k dk
∫

E(k, z) dk
, (25)

where k2 = k2
x + k2

y is the horizontal wave number and the energy

spectrum E(k, z) is averaged over horizontal layers such that it takes

the form

E(k, z) =
1

4

∑

k

û(kx, ky, z)ρ̂u∗(kx, ky, z)+ρ̂u(kx, ky, z)û∗(kx, ky, z).(26)
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Figure 6. The horizontally averaged ux profiles at t ≈ 60 are shown for

different forcing methods. Two different τ0 parameters are considered for

comparison.

The resulting Reynolds number variations with depth for the four

different runs after 60 sound-crossing times is shown in Fig. 5 (a).

It becomes evident that the flow for all four cases is very different

at the late stage of the calculation. The viscous method is charac-

terised by two regions above and below the middle of the domain,

where the flow has high Reynolds numbers about 850 and 1300

respectively. The asymmetry is due to significantly denser fluid at

the bottom of the domain. For the relaxation method with τ0 = 10,

these two regions are narrower and the maximal Reynold numbers

are approximately 800 and 900. For τ0 = 1.0 the region of high

Ret is spread with two peaks very close to z = 0.5. For these three

methods a moderate turbulent flow confined in the middle is ob-

tained. The corresponding turbulent length-scales, shown in Fig. 5

(b), reveal that for the three methods used the length-scales become

less than 0.5 around z = 0.5 and increase towrads the boundaries.

Using the viscous method leads for this particular case to smaller

turbulent length scales than using a relaxation method.

We now consider the horizontally averaged velocity profile ūx(z)

shown in Fig. 6 at a time, t̃, where the system evolves towards a

quasi-static state. For all methods the shear profile is smoothed out.

For the relaxation method ūx(z) remains a hyperbolic tangent pro-

file, but for the viscous method a steep transition occurs around

z = 0.5, which merges into a smoother region at the boundaries.

This is caused by the different type of forcing: The force applied

in the viscous method is solely defined by the shape of the target

profile. Since the initial target profile has a thin width, the second

derivative is large in this region, which causes a stronger forcing,

compared to the outer parts of the domain. In contrast the relaxation

method applies a force that depends on the deviation of the actual

mean profile from the target profile, such a back reaction ensures

the preservation of a hyperbolic tangent profile.

3.2.3 Theoretical framework for energy budgets

To get a more comprehensive insight on the processes involved

when a linear shear flow instability saturates it is useful to track

the evolution of the standard forms of energy during the transition

phase and beyond. Following the same procedure as used in Lan-

dau & Lifshitz (1987) and Griffies (2004) we decompose the total

energy into the kinetic energy, Ekin, internal energy, I, and gravita-

tional potential energy, Epot, which in our case are given as

Ekin =
1

2

∫

V

ρu2dV (27)

I = cv

∫

V

TρdV (28)

Epot = −θ(m + 1)

∫

V

ρzdV, (29)

where the volume integral is taken over the whole domain and the

internal energy for an ideal gas is considered. Then, in order to

understand the energy evolution with time, and to get more de-

tailed insights into energy budgets, it is useful to derive the energy

changes in our system using equations (1) - (3). The time derivative

of the kinetic energy becomes

∂Ekin

∂t
=

∂

∂t

(

1

2

∫

V

u · u ρ dV

)

(30)

= σCk

∮

S

τ · u·n̂ dS

︸                ︷︷                ︸

=0

−σCk

∫

V

τi j

∂ui

∂x j

dV

︸                ︷︷                ︸

ε

−
1

2

∮

S

|u|2ρu · n̂dS

︸                ︷︷                ︸

Ha

−

∫

V

u·∇pdV

︸        ︷︷        ︸

Hp

+

∫

V

θ(m + 1)ρw dV

︸                 ︷︷                 ︸

Hρ

+

∫

V

u · FdV

︸       ︷︷       ︸

W

= −ε −Ha −Hp +Hρ +W

where S denotes the volume surface, ε is the positive viscous dissi-

pation rate,Ha is the change rate due to advection,Hp is the rate of

work done by expansion and contraction,Hρ denotes the exchange

rate with the potential energy due to density flux and W is the work

done by external forcing. For the rate of change in the internal en-

ergy we get

∂

∂t
I =

∂

∂t

(

cv

∫

V

TρdV

)

(31)

= cv

∮

S

γCk∇TdS

︸              ︷︷              ︸

Φtemp

+cv(γ − 1)

∫

V

u·∇pdV

︸        ︷︷        ︸

Hp

+ cv

∫

V

ρqdV

︸       ︷︷       ︸

ε

= Φtemp +Hp + ε,

where q = Ckσ(γ − 1)|τ|2/2ρ such that ε is due to viscous heating

and Φtemp corresponds to heat loss or gain at the surface, S . In the

standard form, the changes in the gravitational potential energy are

only due to the exchange of density flux as can be seen by taking

the time derivative

∂

∂t
Epot =

∂

∂t

(

−

∫

V

θ(m + 1)ρzdV

)

(32)

= θ(m + 1)

∮

S

zρu·n̂dS

︸                     ︷︷                     ︸

=0

− θ(m + 1)

∫

V

ρwdV

︸                 ︷︷                 ︸

Hρ

= −Hρ.

Summing equations (30) - (32) yields the total energy change of the

system

∂

∂t

(

Ekin + Epot + I
)

= W + Φtemp −Ha, (33)
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Table 2. Time intervals of the different dynamical stages for the viscous

forcing and relaxation method with two different τ0.

Viscous Relaxation Method

Stage: Method with τ0 = 1 with τ0 = 10

before instability 0 < t < 2.5 0 < t < 3.5 0 < t < 4.5

exponential growth 2.5 < t < 4.5 3.5 < t < 6.5 4.5 < t < 10

saturation 4.5 < t < 23 6.5 < t < 30 10 < t < 30

quasi-steady state t > 23 t > 30 t > 30

which is only due to external forces, heat loss or gain at the sur-

faces, and advection. Note, that Ha is negligible in our case, be-

cause our system is closed and mass is conserved. It can be seen that

viscous dissipation, ε, density flux,Hρ, and work done by expan-

sion and contraction,Hp are exchanged between the kinetic energy

and the potential energies. However, using the standard decompo-

sition of energies it remains impossible to distinguish between re-

versible and irreversible energy exchange between these three en-

ergy budgets. In order to resolve this issue Winters et al. (1995)

introduced a method to analyse the mixing behaviour of a turbu-

lent flow, which can be used to track reversible and irreversible

changes of different potential energies. This framework was further

extended to compressible fluids by Tailleux (2013). For this method

we decompose the gravitational potential energy of the system de-

fined in equation (29) into two parts. One part is the so-called back-

ground potential energy defined as

Eback = −θ(m + 1)

∫

V

ρ⋆zdV, (34)

where the ρ⋆ is the adiabatically redistributed density. This defini-

tion is also appropriate for a compressible fluid. Another part is the

available potential energy

Eavail = −θ(m + 1)

∫

V

(ρ − ρ⋆) zdV, (35)

which corresponds to the difference between the actual potential

energy Epot and Eback. The available potential energy can be

transformed into other types of energies, whereas the background

energy can not be accessed and transformed in other types of ener-

gies. Therefore, the background potential energy can be interpreted

as the part of the total gravitational potential energy that corre-

sponds to the lowest energy level that can be reached if the system

is adiabatically redistributed. While a system is evolving the

background potential energy can be only changed by irreversible

processes. In our numerical calculations the background potential

energy is obtained by taking the actual density distribution and

sorting it in an ascending order, such that the highest density is

at the bottom of the domain. In a similar procedure the internal

energy can be decomposed into a background internal energy

budget and an available internal energy budget, for a more detailed

discussion see Tailleux (2013). However, for our purpose it is

sufficient to analyse only the budgets for the gravitational potential

energy in order to understand the mixing behaviour of the system.

3.2.4 Energy budgets from numerical calculations

The Kelvin-Helmholtz instability converts the kinetic energy

that is available to the base horizontal shear flow into vertical

fluctuations that need to overcome the stably-stratified atmosphere.

The gravitational potential energy of the system is changed
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Figure 7. The total kinetic energy, internal energy and the gravitational po-

tential energy evolution for viscous forcing and relaxation method by us-

ing two different τ0. In (a) Ekin(t)/Etot(t = 0) is plotted with time, in (b)

I(t)/Etot(t = 0) and in (c) Epot/Etot(t = 0) is displayed, where all en-

ergies are normalised by the initial total amount of the system’s energy

Etot(t = 0) = 195.81.

during this process. In addition, after saturation the fluid starts

to overturn, and is mixed, where irreversible processes change

the potential energy. Here we want to investigate how the forcing

contributes to the different forms of energy in the system. Using

the separate components responsible for the change in different

energy budgets presented above and tracking the changes of the

kinetic energy, internal energy and different gravitational potential

energy budgets, we will discuss how the system behaves for

different forcings. Below we distinguish between four stages of the

system’s evolution that are: the time interval before the exponential

growth of an instability, the exponential growth phase, the onset of

 at C
ity U

niversity, L
ondon on A

ugust 16, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−6

t

E
a
v
a
il
(t

) 
/ 
E

to
t (

t=
0
)

 

 

viscous

τ
0
 = 1.0

τ
0
 = 10

Figure 8. The available gravitational potential energy Eavail(t)/Etot(t = 0)

evolution for both the viscous forcing and relaxation methods by using two

different τ0.

saturation, and a fully saturated quasi-steady state. These stages

are at different times for the three calculations that are discussed

and can be found in Table 2.

Significant differences between the forcing methods become

evident when following different energy budgets normalized by

the initial value of the system’s total energy with time as shown in

Fig. 7. In general the sum of the three energies is increasing due to

the external work done by the forcing. For the viscous forcing the

kinetic energy remains almost constant until the instability starts

to grow at t̃ ≈ 3, at that time Ekin begins to decrease. The internal

energy increases at an almost constant rate from the beginning of

the calculation, which is due to viscous heating that extracts kinetic

energy via ε in equation (30). As the kinetic energy remains almost

constant in the beginning, it can be concluded that the amount

of energy dissipated is fed back into the system due to external

work, W. The decrease in the kinetic energy of the system during

the exponential growth of the instability is a direct consequence

of the Kelvin-Helmholtz instability extracting energy from the

large-scale shear flow in order to overcome the potential energy

associated with the stably-stratified atmosphere. This amount of

energy is partly converted into vertical motion, which contributes

to the kinetic energy, and partly exchanged into gravitational

potential energy. The term in the energy change rate associated

with this exchange is Hρ, which leads to a slight increase in Epot.

Because the conversion of the mean-flow kinetic energy to vertical

motion retains the energy in the kinetic energy budget, the decrease

is small.

During the saturation phase the negative rate of change in the

kinetic energy grows. Whereas for the internal energy a plateau is

present just after the exponential growth phase and this is followed

by a steeper increase during the end of the saturation phase. The

gravitational potential energy starts to increase faster from the

beginning of the saturation phase.

Comparing the gravitational potential energy and the internal

energy shows that the changes of the internal energy are similar

to the changes in the potential energy but with a time shift and a

greater amplitude. The time delay is a direct consequence of the

irreversible processes during the feedback of gravitational potential

energy into kinetic energy, where previously kinetic energy is

transformed reversibly and irreversibly into gravitational potential

energy due to the termHρ.

Eventually a quasi-static state is reached, where the kinetic

energy eventually will decrease very little, but the potential ener-

gies will constantly increase due to viscous heating and irreversible

mixing processes. Both processes extract kinetic energy due to ε,

Hρ, andHρ respectively, but only a part of ε is added to the system

by the external force. Therefore, the system will always evolve

very slowly, but remain statistically similar for a very long time.

We now focus on the calculations where the relaxation method

was used to sustain a shear flow. The time evolution of Ekin for the

relaxation method with τ0 = 10 is similar to the viscous forcing.

However, the early evolution is different because Ekin decreases

even before the instability starts to develop. This is expected since

the kinetic energy initially contained in the initial shear flow is

dissipated by viscosity over a short time-scale. Therefore, the

exponential growth regime is shifted to later times, where a similar

drop in Ekin as was found in the viscous forcing case. In both cases,

this reduction in kinetic energy corresponds to an increase in the

potential energy in the system (see Fig. 7 (c)). In the non-linear

regime the system also tends towards a quasi-steady state. Similar

to the viscous forcing, for the relaxation method with τ0 = 10 the

background potential energy and internal energy increase slowly

until the system start to saturate. During the saturation phase a

steeper increase is present. Then, after several sound crossing

times, both potential energies start to converge towards a constant

small growth after the system saturated. This behaviour reveals

that the energy induced by the forcing principally transfers into

internal energy due to dissipation, but does not contribute to an

increase in either kinetic energy or available potential energy for

late time evolution.

A calculation with a shorter relaxation time, τ0 = 1.0, shows

a different behaviour, where Ekin increases with the onset of

instability. This growth is due to the very intense external forcing

present as soon as the averaged velocity profile deviates from the

target profile, which is the case when the instability starts growing.

For τ0 = 1.0 this corresponds to a growth in the total kinetic energy

over approximately 30 sound crossing times whereby Ekin slowly

oscillates around a fixed value.

The case with τ0 = 1.0 shows that a constantly large increase of the

potential energy is present even for the saturated stage. Looking

back at Fig. 7 (a) the kinetic energy converges towards a constant

value at large times. This indicates again that the kinetic energy

pumped into the system by external forcing, W, is used to balance

viscous dissipation and partly converted into gravitational potential

and internal energy. Here the amount of externally added energy is

significantly greater than for the other two calculations.

In contrast for the calculation with τ0 = 0.1, which is not displayed

here, the kinetic energy grows during the whole duration of the

calculation. As discussed earlier, this growth in the kinetic energy

of the system is in that particular case associated with a transition

between a stably stratified atmosphere (the polytropic index is

initially m = 1.6) and a convectively unstable atmosphere where

large convective cells appear in the upper part of the domain

(see Fig. 4 (c)). This transition is driven by the large viscous

heating in the central shear region modifying the temperature

profile and changing the sign of the Brunt-Väisälä frequency.

While the interaction between a large-scale shear flow and thermal
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convection is of interest (see for example Guerrero & Käpylä 2011;

Silvers et al. 2009), this is beyond the scope of the current study.

In Fig. 8 the evolution of the available gravitational potential

energy is plotted for the three-dimensional calculations. This

part of energy is due to the reversible part of Hρ in the energy

equations. When looking at the available potential energy in Fig. 8,

no available potential energy is present before the saturation of the

shear instability for all cases. Such that the system is in a state of

lowest possible potential energy. The Eavail for the viscous method

and relaxation method with τ0 = 10 increases similarly, although

the arch of Eavail is shifted towards later times in the calculation

with τ0 = 10. During saturation the fluid is mixed mostly, which

means that due to the onset of overturning the background density

is modified. This is evident from the increase of Epot and Eavail,

which indicates reversible and irreversible mixing processes see

Fig. 7 (b) and (c). After saturation less mixing occurs in the

system. For the viscous method Eavail converges towards zero

for late times, whereas in the calculation using the relaxation

method with τ0 = 10 the available potential energy oscillates

around a small value. Since available potential energy is directly

related to mixing (Peltier & Caulfield 2003), the system evolves

towards a state with little mixing. This means that, after a certain

modification of the density profile, the overturning settles down

and persists at a low level over a long period of time. In agreement

with kinetic energy evolution for the relaxation method with

τ0 = 1.0, the available potential energy starts to growth more

rapidly and the system seems to reach a type of quasi-static state at

very late times. However, for both cases τ0 = 1.0 and τ0 = 10, with

current limitation on numerical resources, it remains unclear if the

available potential energy is saturated or will eventually decay. In

order to clarify this, the calculations need to be evolved further.

However, for the purposes of comparing the forcing methods in

this paper it is immaterial. By using the relaxation method we

can reach a long-lived state and different mixing behaviours exist

depending on the relaxation time τ0, which persist sufficiently long

to study long-time evolution of the generated turbulence.

3.2.5 Comparing total viscous dissipation and external work

To investigate how much of the energy induced into the system by

forcing balances the viscous dissipation, which part remains as ki-

netic energy and what converts into potential energy, it is useful to

study the work done by the forcing, given by W as well as the to-

tal viscous dissipation rate, ε, with time. These quantities can be

found for all three calculations in Fig. 9. At the start of the calcula-

tion the viscous forcing will always almost exactly balance the vis-

cous dissipation, because the velocity profile does not deviate from

the target velocity such that the viscous force cancel the viscous

dissipation exactly (see equation (10)). This is true until approxi-

mately t̃ ≈ 5 when the instability starts to saturate. After saturation

the work done by the viscous forcing is not sufficient to balance

the additional dissipation associated with small-scale fluctuations

in the system in that case. This is associated with a decrease in the

total kinetic energy as already discussed previously. At late times

the amount of ε converges towards the work done (see Fig. 9 (a))

and so the system evolves towards a quasi-static state, where a sus-

tained turbulent flow is present.

At the beginning of each calculation, using the relaxation method

the work done by the forcing, W, is initially zero since the velocity

profile exactly matches the target profile (see equation (16)). There-

fore, depending on τ0, viscous dissipation is initially not balanced,
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Figure 9. The evolution of total viscous dissipation rate of momentum, ε,

and the work done by the forcing, W for the viscous method and the relax-

ation method are shown. In (a) the viscous forcing is used. The relaxation

method with τ0 = 10 is used in (b), and with τ0 = 1.0 in (c).

as can be seen in Fig. 9 (b, c). As the initial shear flow diffuses,

the associated dissipation decreases until it becomes equal to the

external forcing leading to a quasi-steady state. For the case with

τ0 = 1.0 the force increases shortly after the start of the calcula-

tion such that a phase where the viscous dissipation is balanced is

present before the shear flow instability start to saturate. After satu-

ration the work done by the forcing is greater than ε, which explains

the increase in kinetic energy noticed previously.

Due to the long relaxation time, the case with τ0 = 10 reveals a

distinct behaviour, where W remains less than ε throughout the ex-

ponential growth phase after which it matches for a few sound-

crossing times ε, see Fig. 9 (b). When the total viscous dissipation

reaches a peak the work done remains insufficient to balance for the

viscous dissipation. At large times when the system is evolving to-

wards a quasi-static state the total viscous dissipation remains less

than the energy input such that turbulence can be sustained.

3.2.6 Discussion

Our research has revealed several characteristics of the different

forcing methods: The viscous method provides a well defined

localised force, but without control on the resulting velocity

profile of the saturated flow. The shear instability can freely

develop further away from the middle of the domain, but no

turbulent motion is sustained there. Therefore, modification of the

background profiles are solely due to non-linear dynamics of the

instability. This results in less control on the resulting averaged

velocity profile further away from the middle layer. From energetic

considerations it can be concluded that the additional energy, that

is added to the system during the late time evolution by external

forcing, approaches a constant value. This initially kinetic energy
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is mostly converted into potential energy via dissipation. Only

a small part contributes to the turbulent dynamics by mixing

processes.

On the contrary to the viscous method using the relaxation method

provides control on the resulting velocity profile, because the

force is proportional to the deviation of the horizontally averaged

velocity. Therefore, the target profile is controlled even far away

from z = 0.5. This corresponds to a global forcing, which can

suppresses changes of the background velocity throughout the

domain such that modifications of the background profile due to

the shear instability are suppressed. This also can induce more

mixing, which is not initially caused by the instability of the

localised shear layer and therefore leads to non-physical behaviour

further away from the middle plane.

An additional parameter, the relaxation time τ0, provides control

on the strength of the forcing. Investigating the energy evolution

revealed that decreasing τ0 results in significantly more kinetic

energy induced into the system by the external force than viscous

dissipation converts into internal energy. Therefore, turbulent

motion is supported by the external forcing. For the choice of τ0

two typical time-scales are of interest, the turnover time ts = Lu/U0

and the viscous time-scale tµ = L2
u/µ. For τ0 < ts an instability

with almost the same properties as obtained by the EV-solver is

triggered (see Section 3.1). However, from the energy evolution of

the saturated flow it becomes obvious that only a τ0 greater than or

of the same order as the viscous time-scale, which is tµ ≈ 1.6 for

this case, leads to a system which can reach a quasi-steady state.

Therefore, having compared the non-linear evolution for the

viscous forcing and the relaxation method, we conclude that

both methods can be used depending on the properties of the

dynamics that needs to be modelled. For investigations with focus

on the resulting velocity profile during the saturated regime the

relaxation method is more appropriate, where a careful choice

of the relaxation time has to provide that no significant effects

from the forcing can induce unphysical behaviour. This should

be provided if τ0 ∼ O(tµ) or greater. On the other hand, if the

non-linear evolution of a shear unstable flow is of interest, where

the the mixing behaviour induced by the shear instability is the

main focus, the viscous method provides a more appropriate

forcing. Since the viscous method does not significantly affect

the turbulent dynamics further away from the shear region, the

turbulence induced by the instability can evolve freely.

4 CONCLUSIONS

Turbulent motions driven by a shear flow instability are subject

to occur in a wide range of physical systems, where numerical

calculations can provide a comprehensive insight to the physical

processes. Here direct numerical calculations in two- and three-

dimensional Cartesian domains are used to analyse different forc-

ing methods, which were exploited in the past to maintain a back-

ground shear flow. In order to determine how different forcing

methods affect a saturated flow and to get a more thorough under-

standing on possible unphysical behaviour it is essential to investi-

gate different forcings qualitatively, e.g. by tracking global quanti-

ties and horizontally averaged profiles of velocities.

Testing three methods in the linear and non-linear regime reveals

that two conceptually different methods, the viscous forcing and

perturbation method, result in exactly the same solutions. For both

of these methods the force term remains as initially set, such that

there is no back reaction on the forcing by the velocity changes

associated with the flow. Furthermore, in a few cases with a weak

instability and moderate viscosity the unstable flow decays after

saturation. The third method uses horizontally averaged velocity

profiles of the actual flow to formulate a force that drives the shear

flow back to the target profile after a relaxation time that can be

chosen. Such a method provides a self regulating force and more

control on the strength of the forcing due to different relaxation

times.

Comparing the exponential growth phase with solutions from a lin-

ear stability analysis shows that the growth rates achieved by all

methods used are close to the predicted value, if for the relaxation

method a sufficiently small relaxation time τ0 is chosen. Cases with

larger τ0 lead to a slightly different shear instability, since the vis-

cous dissipation is initially not balanced and the initial state evolves

before an instability can occur. However, focusing on the non-linear

evolution a significant difference in the system dynamics is revealed

when using the relaxation method with different τ0. When choosing

τ0 greater than the viscous time-scale a non-linear evolution like for

the viscous forcing method is achieved, where the long time evo-

lution converges towards a quasi-static state. Energy induced into

the system by the force balances the loss by viscous dissipation,

but little additional kinetic and potential energy is obtained. In con-

trary a relaxation time τ0 less than tµ leads to a system which is

constantly forced and develops a turbulent region which spreads

across a larger region in the vertical direction. Such cases do not

tend to evolve towards a quasi-static state, which becomes evident

due to their energy evolution. Moreover, the energy induced into

the system is significant greater than the loss by dissipation such

that the energy overrun is converted into kinetic energy of the dis-

turbances and available potential energy of the system.

Analysing the turbulent Reynolds number for late times shows that

when decreasing τ0 the horizontal layer of turbulent flow reaches a

larger vertical extend and very high Re numbers. However, greater

τ0 and the viscous method develop a small region confined around

the middle of the domain with moderate Re numbers. Thus the

strength of the forcing has a strong impact on the spread of the

resulting turbulent region. Interestingly, the mean flow resulting

from viscous forcing develops a peculiar form around the middle

plane, where a steep slope is present, while the relaxation method

leads to a horizontally averaged velocity profile that generally pre-

serves a hyperbolic tangent profile. Since the physical mechanism

driving shear flows in different objects are not known in detail, the

relaxation method provides a tool to adjust the force such that a

more suitable flow can be achieved. Therefore, we conclude that

the relaxation method provides a more suitable method to sustain

a velocity profile when modelling stellar interior as for example

the tachocline in our Sun or shear regions in more massive main-

sequence stars. However, in order to study the non-linear evolution

of a shear driven turbulent flow the viscous method or the equiva-

lent perturbation method suit better, as no artificial dynamics due

to the forcing affects the modification of the background profiles.

The physical mechanism for the generation and maintenance of

the differential rotation in the solar interior and especially the

tachocline is not well understood (Gough & McIntyre 1998; Vasil

& Brummell 2009). It is widely believed that external processes

such as Reynold stresses, which originated in the convection zone,

drives the shear flow in the tachocline (Miesch et al. 2008). How-

ever, we do not know what form the resulting force has that drives

the shear flow in the tachocline. The viscous method correspond to

a forcing confined within the shear region whereas the relaxation

method corresponds to a bulk forcing. Prospective global-scale in-
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vestigations might reveal which of these two forcings is more rele-

vant when modelling the tachocline.

Having established a detailed analysis of possible numerical meth-

ods to sustain a localised shear flow with minimised effect on the

boundaries, possible applications of shear driven turbulence in stel-

lar interiors have to be considered and are currently underway.
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