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Abstract

WNK1 - a serine/threonine kinase involved in electrolyte homeostasis and blood pressure (BP) control - is an excellent candidate
gene for essential hypertension (EH). We and others have previously reported association between WNK1 and BP variation.
Using tag SNPs (tSNPs) that capture 100% of common WNK1 variation in HapMap, we aimed to replicate our findings with BP
and to test for association with phenotypes relating to WNK1 function in the British Genetics of Hypertension (BRIGHT) study
case-control resource (1700 hypertensive cases and 1700 normotensive controls). We found multiple variants to be associated
with systolic blood pressure, SBP (7/28 tSNPs min-p = 0.0005), diastolic blood pressure, DBP (7/28 tSNPs min-p = 0.002) and
24 hour urinary potassium excretion (10/28 tSNPs min-p = 0.0004). Associations with SBP and urine potassium remained
significant after correction for multiple testing (p = 0.02 and p = 0.01 respectively). The major allele (A) of rs765250, located in
intron 1, demonstrated the strongest evidence for association with SBP, effect size 3.14 mmHg (95%CI:1.23–4.9), DBP 1.9 mmHg
(95%CI:0.7–3.2) and hypertension, odds ratio (OR: 1.3 [95%CI: 1.0–1.7]).We genotyped this variant in six independent
populations (n = 14,451) and replicated the association between rs765250 and SBP in a meta-analysis (p = 761023, combined
with BRIGHT data-set p = 261024, n = 17,851). The associations of WNK1 with DBP and EH were not confirmed. Haplotype
analysis revealed striking associations with hypertension and BP variation (global permutation p,1027). We identified several
common haplotypes to be associated with increased BP and multiple low frequency haplotypes significantly associated with
lower BP (.10 mmHg reduction) and risk for hypertension (OR,0.60). Our data indicates that multiple rare and common WNK1
variants contribute to BP variation and hypertension, and provide compelling evidence to initiate further genetic and functional
studies to explore the role of WNK1 in BP regulation and EH.
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Introduction

Essential hypertension (EH), or high blood pressure (BP) $140/

90 mmHg, is a major public health problem that contributes to

millions of deaths worldwide every year due to coronary heart

disease, stroke, and other vascular diseases [1,2,3,4]. The

disorder results from the complex interaction between multiple

genes and environmental factors [5,6,7]. A major goal for

hypertension research has been to identify the genes and

mechanisms underlying the disorder in order to improve the

prediction of those at risk and develop better anti-hypertensive

treatments.

Some advances in hypertension genetics have been made

through studies of rare Mendelian forms of hypertension, which

have identified strong candidate genes for BP regulation and EH

[8]. Mutations in WNK1 (With No K-lysine kinase 1 [9,10], MIM

605232), cause Pseudohypoaldosteronism type 2 (PHA2, MIM

145260) – a rare autosomal dominant disorder primarily

characterised by early onset hypertension and hyperkalemia

[8,11]. In PHA2 patients, gain-of-expression mutations in WNK1

cause hypertension. Conversely, heterozygous knock-out mice that

lack WNK1 expression have low BP, consistent with a gene-dosage

effect of WNK1 on BP [11,12].

WNK1, a serine-threonine kinase regulating numerous ion

channels involved in sodium and potassium transport

[13,14,15,16,17], is ubiquitously expressed, with particularly

high levels of expression in the kidney and cardiovascular system.

WNK1 maps to chromosome 12p13.3, spans ,156 Kb of

genomic DNA and encodes 29 exons [10,18]. There are two

major isoforms of WNK1, a kinase-active long isoform (L-WNK1)

and a kinase-deficient kidney specific short isoform (Ks-WNK1).

These two isoforms are under the control of alternative

promoters located 59 of exon 1 for L-WNK1, and in intron 4

for Ks-WNK1 [19]. It is thought that hypertension in PHA2

patients may partially be the result of increased sodium

reabsorption via L-WNK1/Ks-WNK1 mediated up-regulation of

the thiazide sensitive sodium chloride cotransporter (SLC12A3 or

NCCT) and the renal amiloride-sensitive epithelial sodium

channel (ENaC, encoded by three genes: SCNN1A,B and G),

and hyperkalemia by increased inhibition of the renal outer

medullary potassium channel (KCNJ1) [13,14,15,16,17]. These

findings together with the discovery that WNK1-deficient mice

have low BP have highlighted the functional importance of

WNK1 in ion transport and BP regulation [12].

We and others have previously reported association between

common variants in WNK1 and human BP variation in adults.

Using a tag SNP approach, association was found with a variant

near the promoter and severity of hypertension in families from

the British Genetics of Hypertension (BRIGHT) Study [20].

Furthermore, common WNK1 variants were found to be

associated with ambulatory BP in families representative of the

general population [21]. Turner el. al. (2005) have also reported

association between common WNK1 variants and response to

thiazide diuretics [22]. These studies prompted interest in further

genetic studies exploring the role of WNK1 in BP regulation.

Since publication of these studies, additional SNP data have

become available from the Haplotype Mapping Project (Hap-

Map)[23]. Taking advantage of this gain in genetic information,

our aim was to extend and replicate our findings between WNK1

and BP variation and to further localise causative SNPs/regions

within the gene using the British Genetics of Hypertension

(BRIGHT) study case-control study, which provides substantial

power for detecting susceptibility loci with moderate risks for

disease.

Methods

MRC BRIGHT study case-control study
As part of the MRC BRIGHT study (http://www.brightstudy.

ac.uk) hypertensive cases and normotensive controls of white

European ancestry have been recruited for association testing.

Case ascertainment and phenotyping has been described previ-

ously [24]. Briefly, cases have BP readings $150/100 mmHg

based on one reading or $145/95 mmHg based on the mean of

three readings and there is extensive phenotyping information

from all individuals, including anthropometric data, plasma and

urinary electrolytes, and diagnosis BP recordings. Further details

of recruitment and phenotyping can be found online at www.

brightstudy.ac.uk. Healthy, age and sex matched normotensive

controls (BP readings #140/90 mmHg) had similar phenotyping,

with the exception that plasma and urinary electrolytes were not

measured. All subjects participated as volunteers and were

recruited via hypertension registers from the MRC General

Practice Framework in the UK. Ethics Committee approval was

obtained from the multi- and local research committees of the

partner institutes, and all participants gave written informed

consent.

The Estonian HYPEST sample collection
The Estonian participants were recruited during 2004–2007

across the entire country in the framework of the HYPEST

sample collection (n = 1,823) targeting hypertension risk factors

in the Estonian population (permissions no 122/13, 22.12.2003;

137/20, 25.04.2005 by Ethics Committee on Human Research

of University of Tartu, Estonia). Hypertensive patients were

recruited at the North Estonia Medical Centre, Tartu Estonia.

Healthy (exclusion criteria; cardiovascular disease, diabetes, and

antihypertensive treatment), normotensive individuals were

recruited across the whole country. The majority of the

HYPEST participants (n = 1,482) possess a documented history

of multiple systolic blood pressure (SBP) and diastolic blood

pressure (DBP) readings. For this study we defined cases

(n = 596) as individuals with either blood pressure readings

$160/100 mmHg based on the median of several measurements

or under antihypertensive therapy. Controls (n = 650) were

defined as having median blood pressure readings below 140/

90 mm Hg. The quantitative association analysis of SBP and

DBP (n = 1,284) included both untreated (n = 881) and treated

individuals (n = 403).

London Life Sciences Prospective Cohort Study
(LOLIPOP)

This is a prospective study of 18,829 subjects (UK-based

Indians, n = 12823 and white Europeans, n = 6006) investigating

cardiovascular risk factors in certain sub-populations. For this

study we selected white European individuals; 485 cases and 458

controls, drawn from the top and bottom 10% of the BP

distribution. All blood pressure readings are off-medication.

The Whitehall I study
The re-survey of the Whitehall study has DNA and

blood pressure measurements recorded in middle age (1967–

1970) and in old age (1997) on 5360 men. For this study, we

selected white European men; 466 hypertensives and 536

controls, drawn from the top and bottom 10% of the BP

distribution. The design and methods of Whitehall I as well as

the characteristics of the participants have been described in

detail elsewhere [25].

WNK1 Variants & Blood Pressure
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The Olivetti Heart Study
The Olivetti Heart Study population is derived from the male

workforce of the Olivetti factories of Pozzuoli (Naples) and

Marcianise (Caserta), Italy. The general characteristics of the study

and its methodological procedures have been previously described

[26,27]. The local ethics committee approved the study protocol,

and informed consent was obtained from all participants. A total

of 1085 individuals aged 25–74 years were examined in 1994–95:

of these, 907 (83.6%) were seen again in 2002–04, of these 868

individuals had DNA available for genotyping at both time-

points[26]. We analysed individuals at the 2002–04 time-point,

cases were defined as individuals with BP readings of $145/

95 mmHg, normotensive controls had BP readings of #140/

90 mmHg.

Whitehall II study
After ethical clearance the Whitehall study enrolled 10,308

subjects (3413 women) aged 35–55 working in the London offices

of 20 civil service departments between 1985–1988. In this

longitudinal study blood pressure was recorded at phase 1 (1985–

1988), phase 3 (1991–1993), phase 5 (1997–1999) and phase 7

(2003–2004). DNA was stored from phase 7 of the study. For

association testing with blood pressure and hypertension we

selected individuals from Phase 5 as diabetes ascertainment and

blood pressure medication records were most complete from this

phase. For case control analyses, hypertensives were selected using

blood pressure recordings of $145/95 mm Hg, or individuals

taking anti-hypertensive medication or a physician diagnosis of

hypertension. Normotensive controls were selected using blood

pressure recordings #140/90 mmHg and not taking any anti-

hypertensive medications.

English Longitudinal Study of Ageing (ELSA)
After ethical approval the participants were drawn from around

12,000 respondents to the Health Survey for England (HSE) over

three separate years (1998, 1999 and 2001) to provide a

representative sample of the English population aged 50 and

over. Each individual had a mean of three blood pressure

measures taken when the participant was seated and antihyper-

tensive medications were recorded, DNA was extracted from 5672

participants in wave 2 (2004). For association testing with blood

pressure and hypertension we selected individuals from wave 2.

Cases and normotensive controls were defined using the same

criteria as the Whitehall II study.

Tag SNP selection
The HapMap database was used to identify common

polymorphisms across the WNK1 genomic region [23]. Tag SNP

selection was performed using Tagger (http://www.broad.mit.

edu/mpg/tagger) [28]. WNK1 SNP data were obtained from

HapMap (Data Rel 21/phaseII Jul06, NCBI 35, dbSNP 125)

using the WNK1 chromosomal coordinates, chr12:732 992–

888 219610 kb, and the data used as input for Tagger. The

original 8 tSNPs[20] and one additional SNP (rs3088353) located

in the L-WNK1 promoter were forced were forced in as tSNPs

prior to the search. Additional tSNPs were selected to capture

100% of variation in HapMap with minor allele frequencies

.0.05 and minimum R2 of 0.8.

Genotyping
All SNP genotyping was performed using the Taqman assay

developed by Applied Biosystems, followed by allelic discrimina-

tion using the ABI PRISM 7900HT Sequence Detection System

and software (SDSv2.0, Applied Biosystems). SpecificWNK1 SNP

Taqman probes and primers were obtained from Applied

Biosystems Assay-by-DesignTM Service for SNP genotyping.

Genotyping of individuals from the Whitehall study was

performed at the Centre National de Génotypage, France, using

the Taqman assay. The HYPEST sample was genotyped using

Taqman, individuals from Whitehall II and the ELSA study were

also genotyped using the Taqman assay at Geneservice UK.

Statistical analysis of the BRIGHT study
Hardy–Weinberg equilibrium (HWE) was assessed by a x2 test.

SNPs were dropped from all analyses if they were significantly out

of HWE (rs11064519 HWE-p = 0.0001 and rs4980973 HWE-

p = 0.0002 in control samples). The |D9| and r2 measures of

linkage disequilibrium were calculated using the program Haplo-

view v4 [29].

All tests for association were performed with the statistical

package R (http://www.r-project.org/)[30]. Logistic regression

was used to test for association with EH and linear models for

quantitative analyses. All analyses were adjusted for age, sex, body

mass index (BMI) and centre of recruitment to allow for

population stratification. The quantitative phenotypes were non-

normally distributed and were analysed using naturally logged

transformed data. Wald tests from a linear regression can be

affected by non-normality and lead to inaccurate estimates of the

variance-covariance matrix. Therefore, we also used an empirical

estimate of the standard errors from 10,000 bootstrap samples to

calculate the Wald tests. This approach selects random samples of

size n (n = population size) with replacement from the original

data, and repeats the sampling procedure a large number of times

to provide information on the bias and variability of the parameter

estimates. For each test of association, we repeated the selection

procedure on 10,000 random samples and report the bootstrap

estimate (effect) and 95% confidence intervals.

For single tSNP analyses, we tested for association under

additive, dominant and recessive models. To control for multiple

testing, global p-values were estimated using 10,000 permutations

of the trait label to calculate the empirical distribution of the

minimum p-value observed across all models for all SNPs.

Multiple testing adjustments were applied separately to each trait,

therefore only controlling for multiple testing within each trait. We

only present results for tSNPs and haplotypes showing evidence for

association after permutation testing with p,0.05.

Haplotype associations were explored using the R package

HaploStats [31]. HaploStats estimates haplotype frequencies via

the expectation-maximization (EM) algorithm and computes

global and haplotype-specific score statistics for tests of association

between a trait and haplotypes weighted by their posterior

probabilities. Permutation p-values were computed in HaploStats

using 10,000 permutations for 24 hour urine potassium excretion.

For EH, SBP and DBP 10,000,000 permutations were used. In all

haplotype analyses, we considered only those haplotypes with

frequencies greater than or equal to 5% as separate independent

variables, low frequency haplotypes with frequencies ,5% were

combined into a single group. To further explore the specific

effects for individual low frequency haplotypes, we repeated the

analysis to include haplotypes with frequencies $0.001. Haplotype

specific Odds ratios (OR) and effect sizes were estimated using

logistic regression for association with EH and linear models with

the quantitative phenotypes in R weighted by their posterior

probability [30,31]. The most frequent haplotype was used as the

baseline haplotype, with which effects of the other haplotypes were

contrasted.

WNK1 Variants & Blood Pressure
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For the quantitative analyses with diagnosis BP (off-medication

and therefore not confounded by the effects of drug treatment),

data were available on 1183 cases and 1700 controls. These blood

pressure readings were obtained from GP records at the time of

their diagnosis. Mean BP levels from three readings for the 1183

cases and 1700 controls were used. For the biochemical

phenotypes, analyses were performed in cases only, and these

were on medication measures. No biochemical data were available

for the control population. We did not have acidified urine for

measuring urinary calcium or measures of serum potassium in the

BRIGHT cases.

Statistical analyses in replication cohorts and meta
analyses

For quantitative association analysis of SBP and DBP, we

corrected BP values for the effects of BP lowering therapies

(where appropriate) using the method described by Tobin and

colleagues [32,33] -. for individuals on antihypertensive medi-

cation, we adjusted systolic and diastolic blood pressure

measures by adding 15 mm Hg to systolic and 10 mm Hg to

diastolic readings.

We then tested for association with BP variation and EH in each

cohort separately using 10,000 bootstrap samples. To avoid multiple

testing issues we analysed the data under a dominant model with the

prior hypothesis that carriers of rs765250 [A] (A/A+A/G verses G/

G) would have higher BP levels and be at increased risk for EH

compared to G/G homozygotes, as determined from our primary

analysis in the BRIGHT study case-control resource. As we are

testing a specific hypothesis we report one-tailed p-values for the

replication cohorts. We declare replication if the association is in the

same direction with one-tailed p,0.05. Results were combined in a

meta-analysis under a fixed effect model in R. Tests of heterogeneity

were also evaluated using the I2 statistic [34]. If there was any

statistical evidence for heterogeneity (p,0.05) then the analysis was

repeated using a random-effects model, which includes a measure of

variance between studies.

Results

WNK1 variation
Twenty eight tagging SNPs (tSNPs) were identified that capture

100% of the common WNK1 variation in HapMap (mean r2 = 0.9,

Table 1. WNK 1 single nucleotide polymorphisms.

tSNP gene positiona Chr12 nt position (bp) Alleles MAFb HWE p Controls

1 rs7137188 59 724592 C/T 0.48 0.1

2 rs1468326 59 727762 C/A 0.11 0.8

3 rs3088353 59 732901 A/C 0.46 0.9

4 rs11064519 i1 741472 C/G 0.34 0.0001

5 rs2369402 i1 748925 G/A 0.21 0.1

6 rs2107612 i1 758581 A/G 0.27 0.7

7 rs2107613 i1 758689 C/T 0.23 0.4

8 rs11608756 i1 760094 A/G 0.39 0.04

9 rs11064524 i1 760163 G/T 0.25 0.8

10 rs11064527 i1 761286 A/C 0.16 0.4

11 rs11064536 i1 775843 T/C 0.17 0.5

12 rs765250 i1 778544 A/G 0.31 0.5

13 rs12314329 i1 779992 A/G 0.08 0.4

14 rs11611246 i4 809741 G/T 0.22 0.3

15 rs6489756 i4 834767 A/G 0.47 0.7

16 rs12816718 i6 840061 G/T 0.15 0.6

17 rs2286007 ex8 841552 C/T 0.07 0.7

18 rs11611231 i8 844587 C/G 0.10 0.4

19 rs4980973 i9 853307 A/G 0.13 0.0002

20 rs4980974 i9 855289 A/G 0.44 0.6

21 rs880054 i10 858819 A/G 0.41 1

22 rs956868 ex13 861173 A/C 0.14 0.4

23 rs953361 i22 872068 C/T 0.40 0.7

24 rs2301880 i23 874098 C/T 0.24 0.7

25 rs2286026 i26 885434 A/G 0.41 0.9

26 rs2286028 i26 885730 C/G 0.20 0.7

27 rs2277869 I26 887171 C/T 0.16 1

28 rs11571461 39 896580 A/G 0.07 0.3

ai: intron, e: exon, 59: 5 prime; 39: 3 prime.
bMinor allele frequency.
doi:10.1371/journal.pone.0005003.t001
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range 0.8–1.0, Table 1, Figure 1). The average rate of success for

each genotyped SNP was .95%. After genotyping, two SNPs

(tSNP4 rs11064519 and tSNP19 rs4980973) were dropped from

further analysis as they were significantly out of HWE (see Table 1).

After exclusion of these tSNPs we were able to tag 97% of all

common WNK1 variation with r2.0.8 and 100% with r2.0.5.

Figure 1. Association results and WNK1 linkage disequilibrium. The diagram shows the summary results from the association analyses
between WNK1 tSNPs and essential hypertension (EH – red diamonds), blood pressure variation (SBP – blue squares, DBP – green circles) and urine
potassium excretion (UrK – orange diamonds). The 2log(10) of the best p-value are plotted on the y-axis against the physical position or each
genotyped tSNP (x-axis), denoted by their dbSNP identification. Dotted lines represent P-value thresholds. Closed symbols represent significant
associations (p,0.05). The tick marks along the x-axis also show the physical position of all common HapMap. The middle panel shows the genomic
structure of the human WNK1 gene and all known common variation across the WNK1 genomic region. Exons are indicated by the vertical black bars
and alternatively spliced exons by the blue boxes. The green boxes indicate the position of the PHA2 disease causing deletions. The lower panel
represents the extent of linkage disequilibrium as measured by Lewontin’s |D9| across the WNK1 genomic region. |D9| varies between 0 (no
disequilibrium) and 1 (maximum disequilibrium), represented by shades of white to yellow to red. White:|D9| = 0 and red:|D9| = 1. Strong LD (|D9|)
exists between the most widely separated tSNPs, defining a single large haplotype block extending from tSNP 3 (rs3088353), located in the WNK1
promoter, to tSNP 28 (rs11571461) located 39 of WNK1. The plot was produced using a modified version of snp.plotter [49].
doi:10.1371/journal.pone.0005003.g001
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Common WNK1 variants are associated with blood
pressure variation and essential hypertension in the
BRIGHT study

We tested for association between 26 tSNPs with BP variation

and EH in 1700 hypertensive cases and 1700 normotensive

controls from the BRIGHT study. The demographic and

biochemical characteristics of these individuals are shown in

Table 2. For single tSNP analyses, we tested for association under

additive, dominant and recessive models and corrected for

multiple testing using permutation methods. Diagnosis BP

measurements were used in the quantitative analyses, as these

readings are off-medication and therefore not confounded by the

effects of anti-hypertensive treatments.

Multiple SNPs (7/26 tSNPs) located in the WNK1 promoter

and intron 1, were found to be significantly associated with BP

variation under one or more of the models tested (Table 3

and Figure 1). Among the 7 BP associated SNPs, tSNP12,

rs765250, located in intron 1, shows the strongest evidence for

association; carriers of rs765250 allele A (A/A+A/G verses G/G)

are associated with increased SBP (+3.1 mmHg, 95%CI:1.3,4.9,

p = 0.0005) and DBP (+1.9 mmHg, 95%CI:0.7,3.2, p = 0.002).

This same variant demonstrated evidence for association

with EH, (OR:1.34, [95%CI:1.0–1.7], p = 0.015). The associa-

tions with SBP remained significant after permutation

testing under the global null hypothesis ‘‘no SNP is associated

with the trait of interest under any model’’, but not with DBP or

EH (SBP global permutation p = 0.02, DBP p = 0.06, EH

p = 0.4).

Replication of rs765250 association with blood pressure
and essential hypertension

The tSNP rs765250 demonstrated the strongest evidence of

association with BP variation and EH. We genotyped this SNP in

six additional populations totalling 14,451 individuals (HYPEST,

Whitehall I, LOLIPOP, English longitudinal study of ageing

(ELSA), Whitehall II and the Olivetti study) to confirm our

findings,Table 4 shows selective demographic characteristics of

each cohort. We tested for association with BP as a continuous

trait and hypertension in all cohorts under a dominant model,

with the prior hypothesis that carriers of rs765250 allele A (A/

A+A/G verses G/G) would have higher BP levels and be at

increased risk for EH compared to G/G homozygotes – as

determined from our primary analysis in the BRIGHT

study. The results for each trait are presented in Table 5 and

Figure 2.

Meta-analysis across all the replication cohorts (n = 14,451)

revealed significant independent association with SBP (p = 0.007).

There was a non-significant trend for association with DBP

(p = 0.06). No association was seen with EH (OR:1.08,

[95%CI:0.9,1.2], p = 0.33). To determine the overall significance

and effect size in the samples studied, a meta-analysis was

performed combining all cohorts including the original study

population BRIGHT (n = 17,851). In the combined analysis, we

confirmed association between rs765250 and SBP; carriers of

rs765250 [A] were associated with an overall increase in SBP, with

a mean effect on natural log transformed SBP of +0.01,

[95%CI:0.006, 0.02], p = 261024, equivalent to ,2.0 mmHg.

There was an association with increased risk for EH, OR:1.1

[95%CI:1.0,1.3], p = 0.04, and a trend for association with DBP

p = 0.06.

WNK1 variants are associated with urinary potassium
secretion in the BRIGHT study

As disturbances in electrolyte homeostasis accompany the

development of high blood pressure in PHA2 patients carrying

WNK1 mutations, we hypothesised that variation in serum

Table 2. Characteristics of the BRIGHT Study Participants.

Variable Subcategory Controls Cases N Normal range

Male/female 652/1048 652/1048 1700/1700 -

Age (years) 59.41 (69.1) 59.5 (69.1) 1700/1700 -

BMI (kg/m2) Median and IQR 25 (23–25) 27 (25–29) 1700/1700 -

Blood Pressure

clinic SBP(mmHg) 123.57 (610.4) 155.62 (621.2)* 1700/1700 -

clinic DBP (mmHg) 76.8 (66.9) 94.07 (611.2)* 1700/1700 -

diagnosis SBP (mmHg) - 171.2 (616.4) 1700/1183 -

diagnosis DBP (mmHg) - 103.75 (68.1) 1700/1183 -

Serum Biochemistry{*#

Sodium (mmol/L) - 138.7 (63.2) 1584{ 135–144

Chloride (mmol/L) - 101.9 (63.1) 1432{ 97–108

Calcium (mmol/L) - 2.42 (60.1) 1593{ 2.2–2.6

Ionised Calcium (mmol/L) - 2.35 (60.1) 1593{ 2.16–2.5

Urine biochemistry*#

24 hour Sodium (mmol/24 hrs) - 140.32 (661.7) 1186{ 100–250

24 hour Potassium (mmol/24 hrs) - 69.33 (625.4) 1186{ 35–100

Means6SD are presented unless otherwise stated.
*On medication.
#non-fasting.
{Serum potassium was not available.
{Cases only - Serum and urine biochemistry are not available for controls.
doi:10.1371/journal.pone.0005003.t002
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and/or urinary electrolytes would be indicative of altered

WNK1 function or expression, and this may help to identify

polymorphisms that also affect BP. Therefore, we also explored

associations with phenotypes related to WNK1 function in

the BRIGHT cases; measures of serum and urine biochemistry

were not available for the BRIGHT controls. The biochemical

characteristics of the hypertensive cases are presented in Table 2.

We found multiple tSNPs spanning the length of the gene to

be associated with variation in 24 hour urine K+ excretion

(Table 3). These associations remained significant after

correction for multiple testing (p = 0.01). The majority of

cases were on medication at the time of phenotyping, therefore

data were reanalysed including presence or absence of

medication as a covariate in the regression analyses.

After adjusting for medication, the evidence for association

with 24 hour urine K+ remained (p$0.001, data not shown).

After permutation testing, no association was found with

variation in serum Na+, Cl2, Ca2+ or urine Na+ excretion (data

not shown).

Haplotype analysis reveals striking associations with
essential hypertension, blood pressure variation and
urine potassium excretion

Using |D9| as a measure of linkage disequilibrium (LD) across

the WNK1 region, we identified a single large haplotype block

extending from rs3088353 (tSNP3) located in the WNK1

promoter, to rs11571461 (tSNP28) located 39 of WNK1

(Figure 1). WNK1 haplotypes were constructed using 24/26 tSNPs

that fall within this block (2 tSNPs were dropped as they were out

of HWE – see WNK1 variation). There are 8 common WNK1

haplotypes with frequencies (f).5% that account for ,79% of all

haplotypes in the BRIGHT case-control resource (Table 6);

collectively the low frequency haplotypes account for the

remaining ,21% of haplotypic variation.

Table 7 shows the results of the haplotype analysis, it reveals

striking associations with EH (global permutation p,1027), BP

variation (global permutation p,1027), and 24 hour urine

potassium excretion (global permutation p = 1024). Across the

Table 3. Single tSNP association analyses with EH, BP variation and 24 hour urinary potassium in BRIGHT.

Trait tSNP SNP ID
gene
positiona Majorb Minorb RAFc Modeld Effecte 95% CIe perm-pe globaL-pf

EH (Odds ratio) 12 rs765250 i1 A G 0.69 Dom 1.3 1.0,1.7 0.01 0.4

SBP (mmHg) 2 rs1468326 59 C A 0.11 Rec 5.1 0.6,9.2 0.02

3 rs3088353 59 A C 0.46 Rec 1.6 0.2,2.8 0.02

5 rs2369402 i1 G A 0.21 Dom 1.2 0.1,2.2 0.03

6 rs2107612 i1 A G 0.73 Add 1.2 0.2,2.0 0.008

7 rs2107613 i1 C T 0.23 Dom 1.2 0.1,2.3 0.03

11 rs11064536 i1 T C 0.83 Dom 3.1 0,6.1 0.05

12 rs765250 i1 A G 0.69 Dom 3.1 1.3,4.9 0.0005 0.02

DBP (mmHg) 2 rs1468326 59 C A 0.11 Rec 3.1 0.01,5.8 0.04

3 rs3088353 59 A C 0.46 Rec 0.9 0.1,1.8 0.03

5 rs2369402 i1 G A 0.21 Dom 0.8 0,1.5 0.04

6 rs2107612 i1 A G 0.73 Add 0.6 0.01,1.2 0.05

7 rs2107613 i1 C T 0.23 Dom 0.7 0.06,1.4 0.06

11 rs11064536 i1 T C 0.83 Dom 2.5 0.2,4.8 0.02

12 rs765250 i1 A G 0.69 Dom 1.9 0.7,3.2 0.002 0.06

24 hour urine K+
(mmol/24 hour)

3 rs3088353 59 A C 0.46 Dom 25.9 22.5,29.2 0.0004

6 rs2107612 i1 A G 0.73 Add 22.6 24.8,20.3 0.03

8 rs11608756 i1 G A 0.61 Add 22.3 24.3,20.1 0.04

9 rs11064524 i1 T G 0.25 Dom 27.3 212.1,22.2 0.008

12 rs765250 i1 A G 0.69 Add 23.1 25.4,20.8 0.009

13 rs12314329 i1 A G 0.08 Add 24.3 27.8,20.5 0.03

14 rs11611246 i4 G T 0.78 Add 22.9 25.3,20.4 0.02

15 rs6489756 i4 A G 0.47 Add 23.2 25.6,20.9 0.005

27 rs2277869 i26 T C 0.84 Add 24.5 27.6,21.5 0.004

28 rs11571461 39 A G 0.07 Add 24.7 28.7,20.5 0.03 0.01

ai: intron, 59: 5 prime; 39: 3 prime.
bIndicates major or minor alleles, bold indicates the allele increasing blood pressure.
cRAF: Risk Allele Frequency – refers to the allele increasing blood pressure or decreasing urinary potassium.
dBest Model; Add: Additive, Dom: Dominant, Rec: Recessive.
eLinear effect estimate, 95% confidence intervals for EH, diagnosis SBP, DBP and 24 hour urine potassium using 10 K bootstrap samples. P-vaules are based on 10,000
permutations.

fGlobal p-value based on 10,000 permutations - adjusting for testing multiple SNPs and multiple models.
doi:10.1371/journal.pone.0005003.t003
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BP related traits, the most significant associations were seen with

the low frequency haplotype pool, which drive the highly

significant global associations. The pool of low frequency

haplotypes were found to be associated with decreased risk for

EH, OR:0.6, [95%CI:0.5, 0.74], p = 4.8261028 and low BP (SBP-

3.9 mmHg, [95%CI:25.5,22.5], p = 2.161027; DBP

22.3 mmHg. [95%CI:23.1,21.4], p = 2.861027). None of the

common haplotypes were significantly associated with EH.

However, three common haplotypes (haplotypes 3, 5 and 8) were

associated with increased BP and five (haplotypes 2, 3, 4, 6 and 7)

with variation in urine potassium excretion. The strongest

association with BP variation was seen with haplotype 5, this

accounts for ,10% of all chromosomes in BRIGHT (SBP

2.4 mmHg, [95%CI:0.5, 4.2], p = 0.01; DBP 1.25 mmHg,

[95%CI:0.2, 2.3] p = 0.02).

To further explore the specific effects for individual low frequency

haplotypes on BP variation and EH, we repeated the analysis to

include haplotypes with frequencies $0.001 (,minimum haplotype

count of 5, Table 7, and Table S1). We identified 53 haplotypes

with frequencies $0.001 (8 common haplotypes with f.0.05

and 45 low frequency haplotypes with 0.001#f#0.05). Analysis

found 4 low frequency BP lowering haplotypes to drive most of

the haplotype associations (haplotypes 14, 15, 18 and 19).

Interestingly, these haplotypes were nearly unique to the control

population, and as a result are associated with relatively large

BP lowering effects when compared to the most common

haplotype (.10 mmHg, Table 7, and Figure S1). For example,

haplotype 14 was observed in at least 49 controls versus 1 case.

These figures are counts of ‘‘phase-very-certain’’ haplotypes with

posterior probabilities$0.9, and differ from those in Table 7,

which presents counts of all haplotypes weighted by their

posterior probabilities, thus taking into account haplotype phase

uncertainty. This low frequency haplotype (14), accounts for

,1% of all haplotypes in BRIGHT, and was associated with

low BP and decreased odds for hypertension (effect per copy of

haplotype 14, OR: 0.03, [95%CI:0.006,0.1], p = 6.961026, SBP

Table 4. Summary demographics of the replication case-control populations used in this study.

Cohorta Case/Control Male/Female Age mean (SD) BMI mean (SD) SBP mean (SD) DBP mean (SD)

BRIGHT 1700/1700 1304/2096 59.4(9.1) 26.3(3.6) 171.1(16.4)/123.6(10.4) 103.7(8.1)/76.8(6.9)

LOLIPOP 485/458 587/356 52.1 (11.3) 26.2(3.9) 154.8(17.9)/108.6(9.7) 95.4(7.8)/65.0(5.6)

Whitehall I 466/536 1002/- 48.2(4.8) 24.4(2.9) 163.8(14.7)/106.9(6.4) 102.2(9.3)/64.4(5.9)

HYPEST 596/650 397/849 48.8(13.6) 26.4(4.3) 144.2(18)/128(8.2) 87.6 (10.4)/80.6(6.3)

Whitehall II 4867 3620/1247 55.4 (5.9) 26.0 (3.9) 122 (15.9) 77.1(10.4)

ELSA 5422 2323/2745 63.6 (9.4) 27.8 (4.7) 136.1 (18.8) 75.7 (11.0)

Olivetti 971 971/- 51.5 (7.0) 27 (3.0) 129.7 (16.9) 84 (9.7)

aBRIGHT study summary demographics are included for comparison.
doi:10.1371/journal.pone.0005003.t004

Table 5. Association results of rs765250 with essential hypertension and blood pressure variation per cohort and meta-analyses.

Study Population Na Case/Control EH SBP DBP

OR (CI)b p-valuec Effect (se)b p-valuec Effect (se)b p-valuec

Original Study BRIGHT 3400 1700/1700 1.3(1.0,1.7) 0.015 0.04(0.01) 0.0005 0.032(0.011) 0.002

Replication
studies

HYPEST 1246 596/650 1.2(0.8,1.8) 0.2 0.02(0.01) 0.03 0.01(0.01) 0.1

LOLIPOP 943 485/458 1.3(0.8,2.1) 0.1 0.03(0.02) 0.09 0.03(0.02) 0.06

Whitehall I 1002 466/536 1.2(0.8,1.9) 0.3 0.02(0.03) 0.2 0.01(0.03) 0.3

ELSA 5422 2323/2745 1.2(1.0,1.5) 0.03 0.02(0.01) 0.008 0.02(0.01) 0.005

Whitehall II 4867 1247/3620 0.8(0.6,1.0) 0.1 0.004(0.01) 0.3 20.001(0.007) 0.4

Olivetti 971 165/447 0.8(0.5,1.3) 0.5 20.004(0.01) 0.4 20.01(0.01) 0.2

Meta-Analysis Replication 14451 5282/8456 1.1(0.9,1.2) 0.3 0.1(0.004) 0.007 0.007(0.004) 0.06

Test for
heterogeneity

I2 = 30.5%,
p = 0.22

I2 = 0%,
p = 0.42

I2 = 40.5%,
p = 0.14

Meta-Analysisd Combined 17851 6982/10156 1.1(1.0,1.3) 0.04 0.01(0.004) 0.0002 0.01(0.006) 0.06

Test for
heterogeneity

I2 = 35.7%,
p = 0.16

I2 = 39.1%,
p = 0.13

I2 = 52.9%,
p = 0.047

aEffective number – maximum number of individuals available for analysis.
bOdds ratio and confidence intervals for EH using 10 K bootstrap samples. For the replication cohorts and meta analyses 90% confidence intervals are reported as all

analyses were performed with the prior hypothesis that carriers of rs765250 allele A (A/A+A/G vs G/G) would be at increased risk for EH compared to G/G
homozygotes.

cFor the replication cohorts and meta analyses one-tailed p-values are reported.
dFor EH and SBP results were combined under a fixed effects model. DBP showed evidence for heterogeneity and was analysed using a random-effects model.
doi:10.1371/journal.pone.0005003.t005
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215.9 mmHg, [95%CI:219.9,211.7], p = 9.9610213, DBP

29.2 mmHg, [95%CI:211.5,26.7], p = 1.5610212); these asso-

ciation remained highly significant after permutation testing –

global p,1027 for EH and both BP traits.

Discussion

We found multiple WNK1 tSNPs and haplotypes to be

significantly associated with BP, EH and urinary potassium

excretion. The strong prior functional and genetic evidence for

the role of WNK1 in BP regulation [11] together with replication in

additional populations, provides further support for the role of

WNK1 in BP regulation in both hypertensives and the general

population. Although environmental effects, such as diet and drug

treatment will confound the reported associations and may lead to

inaccurate estimates of effect size, our data supports observations

that WNK1 regulates BP and K+ excretion in vivo, however, the

association with K+ homoeostasis remains to be confirmed

[16,35].

In the BRIGHT study resource, the strongest tSNP association

was seen between rs765250 and SBP. This association was

replicated in additional populations, suggesting that the original

association is unlikely to be a false positive. This association,

however, was not replicated in all cohorts tested. Failure to

replicate the effect of rs765250 on EH and BP in every

population could be due to genetic heterogeneity across

populations, small effect sizes or low power. Although the

associations did not reach statistical significance in some of the

individual cohorts, for the majority of populations, the direction

of the effect was consistent with that seen in BRIGHT, with

overlapping 95% confidence intervals. Encouragingly, in the

combined meta-analyses, the evidence for association with SBP

increased. Notably, this same SNP has previously been

associated with ambulatory SBP and DBP in the families from

the GRAPHIC study (min p = 0.001) [21], and more recently,

with DBP gradient (p = 0.02) in children from the Avon

Longitudinal Study of Parent and Children Study [36], lending

further support to the reported findings.

In the single tSNP analyses, our primary associations with BP

variation and EH were observed with variants located in the

WNK1 promoter regions and intron 1. In contrast to this, the

tSNPS associated with urinary K+ excretion span the entire length

of the gene. However, there is some overlap between those tSNPs

associated with BP and variation in urinary K+. In particular, the

variant rs765250, located in intron 1, which demonstrated the

strongest evidence for association with EH and BP variation, is

also associated with decreased in urinary K+ excretion. These

novel genetic data correlate well with what is known about WNK1

function, especially in relation to the primary phenotypes that

characterise PHA2 - hyperkalemia and hypertension [37]. That is,

we would expect true functional variants (or those in LD with these

polymorphisms) to be associated with both BP and altered

potassium excretion; this is what we observe.

Although there is some overlap between those tSNPs associated

with BP and urinary potassium excretion (eg. 3/7 BP SNPs are

also associated with variation in urinary potassium), not all BP

associated variants were associated with urinary potassium and

vice-versa. Furthermore, haplotypes associated with increased BP

were not also associated with decreased urine potassium excretion.

This discrepancy may represent complex interactions between

WNK1 polymorphisms and may also reflect the complexity of

WNK1 regulation and its role in electrolyte homeostasis.

There are two major isoforms of WNK1: L-WNK1 and Ks-

WNK1. L-WNK1 is ubiquitously expressed, but Ks-WNK1 has so far

only been found to be expressed in the kidney [38]. Both L-WNK1

and Ks-WNK1 interact with each other to regulate common

downstream targets involved in electrolyte homeostasis and BP

regulation, via both kinase dependent and independent mecha-

nisms [(e.g., sodium chloride co-transporter (SLC12A3), epithelial

sodium channel (ENaC) and the renal outer medullary potassium

channel (KCNJ1)]. These isoforms are under the control of

alternative promoters – one located 59 of the gene for L-WNK1,

and the other in intron 4, controlling expression of Ks-WNK1 [19].

Furthermore, both isoforms undergo tissue specific splicing and

further variation is achieved by the use of two polyadenylation sites

[18,19,39]. These data imply that there are multiple functional

sites along the gene through which genetic variation could effect

WNK1 expression and function. Furthermore, it has been observed

in some PHA2 patients carrying the WNK1 deletion mutations,

that the development of hyperkalemia may be separate from

hypertension, and often precedes the development of high BP in

these patients i.e., there may be no clear ‘‘cause and effect’’

relationship between the two phenotypes [40]. Therefore, it is

possible that different WNK1 polymorphisms, either singly or in

combination, could contribute to the two different phenotypes.

This could account for some of our observations and will need to

be explored with further studies.

We found multiple tSNPs spanning the entire length of the gene

and several haplotypes to be associated with the traits of interest,

suggesting there may be multiple causal variants across the WNK1

locus. Even though we used a comprehensive tSNP set that

captured all known common WNK1 variation in HapMap,

HapMap does not contain a complete catalogue of all genetic

variation, thus fine mapping will be required to identify the true

causal variants. Interestingly, all common HapMap SNPs in strong

LD (r2.0.8) with rs765250 and the other BP associated tSNPs,

map to the L-WNK1 promoter, the Ks-WNK1 promoter located in

intron 4 [19] and regions in intron 1 that span the sites of the

PHA2 deletions (Figure S2), thus highlighting a few potential

regions for targeted re-sequencing.

The most striking observations from our analyses were the

identification of low frequency haplotypes with large BP lowering

effects and their increased prevalence in the control population.

Loss of WNK1 function is deleterious, as demonstrated by

homozygous knockout mice which are embryonic lethal [12].

On the other hand, heterozygous knockout mice have low blood

pressure, and this is associated with decreased WNK1 expression at

the mRNA and protein level. Therefore, we can hypothesise that

loss of function/expression mutations in WNK1 would be selected

against and be rare in the general population. More subtle

mutations, however, that lead to decreased WNK1 expression or

Figure 2. Meta-analysis plot showing the effect of rs765250 [A] carriers on risk for EH and blood pressure in 17,851 adults. A) Meta
analysis of rs765250 with essential hypertension (EH), B) with systolic blood pressure (SBP), and C) with diastolic blood pressure (BBP). The size of the
grey box is proportional to population size. Odds ratio/effect sizes and confidence intervals are from 10 K bootstrap samples. For the replication
cohorts 90% confidence intervals are reported as all analyses were performed with the prior hypothesis that carriers of rs765250 allele A (A/A+A/G vs
G/G) would have increased BP and be at increased risk for EH compared to G/G homozygotes. For EH and SBP, results were combined in a meta-
analysis under a fixed effect model. Analysis of DBP revealed evidence for heterogeneity therefore results were combined in a meta-analysis using a
random-effects model, which includes a measure of variance between studies.
doi:10.1371/journal.pone.0005003.g002
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function may be ‘protective’ against hypertension, and preserved

at low frequencies in the general population. However, the effects

of genetic drift should not be underestimated in terms of allowing

slightly deleterious alleles to persist in human populations [41].

This may explain some of our observations. The ability of

common tSNPs/haplotypes to capture rare functional variants has

previously been demonstrated for the angiotensinogen (AGT) gene

[42]. It is possible that our tSNP analysis set is capturing rare loss-

of-function mutations that may be embedded in these low

frequency haplotype backgrounds, thus highlighting the need to

re-sequence individuals carrying these low frequency haplotypes.

Our data suggest that multiple common WNK1 variants, with

relatively weak effects, and multiple rare variants with large effects

may be associated with blood pressure variation, and this should

be explored further. Our findings are consistent with recent studies

by Ji et al (2008) [43] and Tobin et al (2008) [44]. Both groups

have performed a systematic analysis of the effect of variants in

genes involved in renal salt handling on blood pressure and the

development of hypertension. Many of which are regulated by

WNK1 – SLC12A2, SLC12A1 and KCNJ1. Ji et al (2008) have

identified rare variants in these genes that are associated with

significantly lower blood pressure and protect from the develop-

ment of hypertension in members of the Framingham Heart Study

(FHS) [43]. In addition, Tobin et. al. (2008) have reported

associations between common variants in these genes and blood

pressure in families from the general population [44]. The findings

suggest that both common and rare variants in genes responsible

for some Mendelian disorders of hypertension and hypotension

may also affect blood pressure variation in the general population.

Our data lends further support to these observations.

The importance of rare variants to quantitative trait variability

and susceptibility to disease has now been demonstrated for a

number of other important phenotypes; including high density

lipoprotein cholesterol (HDL-C), low density lipoprotein choles-

terol (LDL-C) plasma triglycerides and body weight [45,46,47,48].

We believe there is now compelling evidence to initiate further

studies to identify functional WNK1 variants that have a significant

impact on BP variation, electrolyte homeostasis and risk of EH in

the general population; thus taking an important step forward in

our understanding of the pathogenesis of human essential

hypertension.

Supporting Information

Figure S1 Distribution of low frequency blood pressure lowering

haplotypes The plot of systolic blood pressure (SBP)/diastolic

blood pressure (DBP) values for each individual, showing the

distribution of the associated low frequency haplotypes with

posterior probabilities $0.9. The plot shows how the low

frequency haplotypes are mainly found in low BP individuals.

Found at: doi:10.1371/journal.pone.0005003.s001 (1.08 MB TIF)

Figure S2 The genomic structure of the human WNK1 gene is

presented at the bottom of the panel. Exons are indicated by the

vertical black bars and alternatively spliced exons by the red boxes.

The yellow boxes indicate the position of the PHA2 disease

causing deletions. For each of the blood pressure associated SNPs

(red circles) located in intron 1, the r2 for each HapMap SNP with

r2.0.8 is plotted on the y-axis against physical position (x-axis).

The vertical dashed lines indicate the positions of the statistically

similar SNPs.

Found at: doi:10.1371/journal.pone.0005003.s002 (0.90 MB TIF)

Table S1 Haplotype association analysis

Found at: doi:10.1371/journal.pone.0005003.s003 (0.04 MB

XLS)
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