De Haas-van Alphen oscillations are studied for Fermi surfaces (FS)
illustrating the model proposed by Pippard in the early sixties, namely the
linear chain of orbits coupled by magnetic breakdown. This FS topology is
relevant for many multiband quasi-two dimensional (q-2D) organic metals such as
κ-(BEDT-TTF)2Cu(NCS)2 and
θ-(BEDT-TTF)4CoBr4(C6H4Cl2) which are considered in
detail. Whereas the Lifshits-Kosevich model only involves a first order
development of field- and temperature-dependent damping factors, second order
terms may have significant contribution on the Fourier components amplitude for
such q-2D systems at high magnetic field and low temperature. The strength of
these second order terms depends on the relative value of the involved damping
factors, which are in turns strongly dependent on parameters such as the
magnetic breakdown field, effective masses and, most of all, effective
Land\'{e} factors. In addition, the influence of field-dependent Onsager phase
factors on the oscillation spectra is considered.Comment: arXiv admin note: text overlap with arXiv:1304.665