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Hypertension (HTN) is quantitatively the major cardiovascular risk factor and responsible for �50% of cardiovascular morbidity and mor-
tality. Blood pressure (BP) is also a classical complex genetic trait with heritability estimates of 30–50%. Although much is known about BP
regulation, the intrinsic origin of essential HTN remains obscure although many environmental factors are known. Analyses of rare mono-
genic syndromes of HTN have focused attention on pathways that involve renal sodium handling, and steroid hormone metabolism including
the mineralocorticoid receptor activity. The genetic basis of common essential HTN on the other hand is only just becoming accessible
through high-throughput approaches. Unbiased genome-wide analyses of BP genomics have identified 43 genetic variants associated with
systolic, diastolic BP, and HTN. It is highly likely based on current findings that there are hundreds of such loci with small effects on BP,
opening a perspective on the genetic architecture of BP that was unknown before. It is our hope that the knowledge of these and
further loci will lead to improved understanding of BP pathophysiology and to the identification of new targets for drug therapy.
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Introduction
Persistently elevated blood pressure (BP) or hypertension (HTN)
is the most frequent classic cardiovascular risk factor and accounts
for a large proportion of cardiovascular mortality, the main cause
of death worldwide.1 Population-based data from North America
indicate that 33.5% of the adult general population has HTN,2

whereas smoking, hypercholesterolaemia, and diabetes are some-
what less frequent. In a large multi-centric European survey on
primary prevention outpatients, BP is controlled in only 38% of
hypertensives with pharmacological therapy (Table 1)3 and
similar numbers have been observed in the NHANES.4 This is
paradoxical because the pharmacological treatment of HTN has
been shown to be very effective in decreasing cardiovascular mor-
bidity and mortality in many studies,5 –7 across different age
ranges.8,9

Blood pressure regulation and risk factors
There are several reasons why BP control is sub-optimal, especially
in high-risk subgroups. One of them is far from a complete

understanding of the pathophysiologic underpinnings of HTN. At
the basic level, BP is controlled by only two variables following
Ohm’s law: peripheral vascular resistance (modified, e.g. by arterial
wall modifications due to ageing, medial hypertrophy due to hyper-
insulinaemia of obesity) and blood flow (modified by, e.g. increased
fluid volume due to increased salt intake).10 There are several well-
established constitutional and environmental factors that modify
BP levels such as dietary salt intake, alcohol consumption, age,
BMI (body mass index), and physical activity. Even after adjustment
for these major environmental covariates, a large proportion of BP
variability remains unexplained for those with essential HTN
(.90% of the patient base).

Opportunities by genetics and genomics
Genetics and genomics provide a major opportunity to investigate
the remaining variability of BP. Data from family and twin studies
suggest that BP is moderately heritable (30–50%).11 Although
the magnitude of heritability of complex genetic traits in general
has recently been questioned, it appears unlikely that ‘ghost herit-
ability’ reduces true heritability greatly.12 Metrics based on multiple
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measures of BP appear to have a higher heritability (e.g. long-term
average values or ambulatory BP measurements).13 The import-
ance of genetic influence is perhaps best illustrated by the obser-
vation that the presence of a family history of HTN increases
the risk of developing HTN by approximately four times compared
with the general population.14,15

The application of genomics in a quest to solve the unknown
origins of BP and HTN is attractive because of the unbiased
nature of the experimental approach: somewhere in the genome
reside genetic determinants that influence the BP level of a given
individual and the BP-associated variants considered up to now
are of two principal types: (i) variants occurring near exclusively
in rare familial syndromes that lead to monogenic HTN and that
have large effect sizes, causing in many cases catastrophically high
BP levels with severe cardiovascular morbidity and mortality and
(ii) the frequent genetic variability underlying common essential
HTN that has individually, small effect sizes.

In this review, we summarize both types of variation which have
been instrumental over the last few years in improving our under-
standing of BP regulation and HTN. The clinician–cardiologist may
never encounter a patient with monogenic HTN because such syn-
dromes remain rare, but the mechanistic insight may still assist
more general management. Of course, the clinician–cardiologist
encounters individuals with essential HTN every day but the
insights from genomic studies only begin to crystallize and their
role in the clinic is not yet clear. The genomic methods used for
the latter type of experiments are also used for many other
diseases and traits and some general conclusions can be drawn.

Insights into blood pressure
regulation from rare familial
hypertensive syndromes
Hypertensive syndromes are rare but when present a variant in a
single gene is sufficient to increase BP greatly, the effect size of
the genetic variants being large. In many hypertensive syndromes,
individuals develop HTN at an early age (Table 2) and for some
of the variants the effect sizes are likely to be larger than
10 mmHg of systolic blood pressure (SBP). Strictly speaking, the

affected individuals cannot be classified as having essential HTN
because they carry a known underlying genetic defect. Nevertheless,
insights from these rare families have been of great importance for
essential HTN research over the last 20 years because the variants
identified in rare HTN syndromes represented the only clearly de-
finable genetic influence on BP in the human before genome-wide
association study (GWAS) and were often thought to represent
the extremes of the naturally occurring BP variation with the
hope of learning also about essential HTN (see below).

Genes causing monogenic hypertension
Studies involving affected families have identified genes for Mendel-
ian forms of HTN and also hypotension.16,17 In the latter, there is
often significant salt wasting associated with severely reduced BP,
but these are not described in more detail here.

Currently 12 genes have been identified, leading to 8 distinguish-
able Mendelian syndromes causing HTN. Table 2 lists the genes
affected, and some key features of each clinical syndrome. This is
an active area of research, two of the four genes known to
cause Gordon syndrome have only been very recently identi-
fied.18,19 Other Mendelian HTN syndromes have been mapped
to a genomic region, but a specific defect still remains to be eluci-
dated, leading without doubt to the identification of further linked
genes in the future.

Genetic and clinical features of
monogenic hypertension
The pathological variants in monogenic HTN genes follow the
rules of classical Mendelian genetic inheritance (autosomal domin-
ant and recessive) and are often distinguishable by additional spe-
cific phenotypic features, such as electrolyte and hormonal
abnormalities.17,20 The serum potassium level of suspected
patients with a strong family history can sometimes provide
some guidance to suspect a Mendelian form of HTN, but this is
not always the case. A more granular phenotypic analysis may be
provided by biological analyses including dosing of aldosterone,
renin, and additional hormones. It is of interest that 5 out of the
12 genes present gain-of-function mutations (Table 2) leading to
increased BP, the remainder are loss-of-function mutations that
lead to a reduction of an inhibitory effect on BP or to a positive
feedback loop that increases BP. The recognition of a specific
disease entity is important because for some diseases these may
focus therapy upon a specific drug regimen (e.g. response to
steroid therapy in glucocorticoid remediable aldosteronism or re-
sponse to thiazides in Gordon syndrome). Therefore, it is import-
ant to refer patients in whom a monogenic HTN syndrome is
suspected to a specialized centre.

Pathways of monogenic hypertension
genes and conclusions for essential
hypertension
One important overall lesson from monogenic HTN research is
that the 12 genes are members of only two groups of pathways:
renal sodium handling and steroid hormone metabolism, including
mineralocorticoid receptor activity. The specific defects and gene
products are shown in context in Figure 1. Additional monogenic
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Table 1 Prevalence and treatment success for classic
cardiovascular risk factors

Risk factor Prevalence
(adults)2 (%)

Treatment success
in practice3 (%)

HTN 34 38.3a

Smoking 20 NA

Hypercholesterolaemia 15b 43.3c

Diabetes 8 36.7d

a,140/90 mmHg or ,130/80 mmHg in diabetics.
bTotal cholesterol ≥6.5 mmol/L.
cTotal cholesterol ,5 mmol/L.
dType 2 diabetes: HbA1c , 6.5%.
NA, not available.
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Table 2 Monogenic hypertension genes

Gene(s) Chr Disease name Key features of clinical syndrome Mode of inheritancea

and genetic mechanismb
% HTN (N)—%
early-onset HTN (N)c

Estimated
frequency;
occurrence in
the general
population

CYP11B152 (11-beta
hydroxylase gene)

8q (MIM 202010) CAH type IV
(congenital adrenal hyperplasia,
due to 11-beta-hydroxylase
deficiency)

HTN, hypokalaemia, virilization
(variable); two of three patients
have severe, ‘classic form’ with
HTN in the first years of life,
otherwise HTN is usually mild to
moderate in intensity; accounts for
5–8% of all CAH cases

AR; LOF 63% (38)—NA53 �1/100 000 births
�1/5–7000 in

Jewish families of
North African
origin (Morocco,
Tunisia)

CYP11B254 (aldosterone
synthase gene)

8p (MIM 103900) Glucocorticoid
remediable aldosteronism: familial
hyperaldosteronism type I:
glucocorticoid suppressible
hyperaldosteronism

HTN, low plasma renin, increased
aldosterone, response to
dexamethasone; high genetic
heterogeneity and potassium level
often normal; high prevalence of
intracranial aneurysms

AD; GOF
gene expressed under

ACTH control (fusion of the
promoter region of the gene
for CYP11B1 and the coding
sequences of CYP11B2)

88% (8)–41% (12)55 Rare defect

WNK1, WNK456

(lysine-deficient protein
kinase 1 and 4 genes)

12p Pseudohypoaldosteronism type 2
(PHA2): Gordon syndrome
WNK1: PHA2C (MIM 614492)
WNK4: PHA2B (MIM 614491)
KLHL3: PHA2D (MIM 614495)
CUL3: PHA2E (MIM 614496)

HTN, hyperkalaemia, response to
thiazides

WNK1: AR; GOF
WNK4: AR; LOF;
�expression of the
thiazide-sensitive Na-Cl
co-transporter SLC12A3
(NCCT)
KLHL3: AD or AR; LOF

(inhibition of KLHL3
increases the activity of
SLC12A3)
CUL3: AD; LOF

WNK1: 84% (12)–13%18,57

WNK4: 50%
(18)–10%18,58

KLHL3 dominant:
27% (15)–17%19

KLHL3 recessive:
100% (5)–14%19

CUL3: NA—94%18

Rare defect

KLHL318,19 (kelch-like 3 gene) 5q

CUL318 (cullin 3 gene) 2q

SCNN1B59, SCNN1G60

(amilorid-sensitive sodium
channel, beta and gamma
subunit gene encoding two
subunits of the ENaC
sodium channel)

16p (MIM 177200) Liddle syndrome61,62:
pseudoaldosteronism

HTN, hypokalaemia, metabolic
alkalosis, low plasma renin, low
aldosterone, respond to amiloride

AD; GOF SCNN1B: 100% (18)61

SCNN1G: 100%
(6)–50% (6)60

Rare defect

CYP17A163 (steroid
17-hydroxylase/17,20 lyase
gene)

10q (MIM 202110) Congenital adrenal
hyperplasia, due to
17-alpha-hydroxylase deficiency:
CAH type V

HTN, hypokalaemia, hypogonadism/
androgen deficiency

AR; LOF NA64 Very rare defect

Continued
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Table 2 Continued

Gene(s) Chr Disease name Key features of clinical syndrome Mode of inheritancea

and genetic mechanismb
% HTN (N)—%
early-onset HTN (N)c

Estimated
frequency;
occurrence in
the general
population

HSD11B265 (11-beta-hydroxy
steroid dehydrogenase 2
gene)

16q (MIM 218030) Cortisol
11-beta-ketoreductase deficiency:
syndrome of apparent
mineralocorticoid excess

HTN, hypokalaemia, low plasma
renin, responsiveness to
spironolactone; severe HTN

AR; LOF 100% (9) to .89% (9)65 Very rare defect

NR3C266 (mineralocorticoid
receptor gene)

4q (MIM 605115) Early-onset autosomal
dominant HTN with exacerbation
in pregnancy

HTN, severe HTN in pregnancy AD; GOF 100%(8)–100% (8)d 66 One large pedigree
reported

KCNJ567 (potassium inwardly
rectifying channel gene,
subfamily J, member 5)

11q (MIM 613677) Familial
hyperaldosteronism type III

HTN, hypokalaemia, high
aldosterone, high 18-oxocortisol
and 18-hydroxycortisol

AD; LOF 100% (3)–100% (3)67 One pedigree
reported

Genes described to be mutated in monogenic hypertensive syndromes are listed based on the estimated frequency of disease. Key clinical and genetic features are summarized.
aAR, autosomal recessive; AD, autosomal dominant.
bGOF, gain of function; LOF, loss of function.
cThe percentage of patients with HTN and with early-onset HTN (≤18 years of age) are indicated if available in the initial report or a related paper.
dThe age limit for early-onset HTN was ,20 years in this report.
NA, not available.
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Figure 1 Pathways affected in monogenic hypertensive disease. The location of the mutated gene products in monogenic hypertensive syn-
dromes is shown in the context of their pathway. Two groups of pathways are affected, pathways affecting the kidney (A) and pathways affecting
steroid metabolism and the mineralocorticoid receptor (B). A selection of important structures (ion channels, etc.) or enzymes are labelled in
grey. Proteins mutated in monogenic HTN syndromes are marked by a red star. TAL, thick ascending limb of the loop of Henle; DCT, distal-
convoluted tubule; CD, collecting duct.
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defects are known to lead to HTN such as PPAR gamma mutations
leading to diabetes and HTN21 or RET gene mutations leading to
pheochromocytoma and HTN (and other tumours). These and
similar defects are not included in Table 2 because HTN is not
the primary disease phenotype.

The finding that genetic defects in HTN syndromes localize to
proteins of the kidney and to steroid hormone activity suggested
that similar mechanisms also contribute to the genetic origin of es-
sential HTN. Of note is also the partial overlap between the path-
ways of monogenic HTN and commonly used anti-hypertensive
drugs used to treat essential HTN (e.g. diuretics, aldosterone re-
ceptor antagonists). Indeed, rare variants near genes implicated
in monogenic hyper- and hypotension syndromes have been
shown to influence BP in the general population.22,23 But causal
variants of monogenic HTN syndromes are very unlikely to
explain much of the BP variation in the general population and
therefore HTN, because of their very low frequencies in the
general population based on the studies to date.17 Our findings
in Mendelian forms of HTN genes do, therefore, not appear to sig-
nificantly help in the understanding of the pathogenesis of essential
HTN.

Insights by the identification of
common genetic variants
identified with new genomic tools
Ever since the classic work of Pickering et al.,24 HTN has been con-
sidered a multi-factorial (or ‘complex’) trait. Today, it is known that
the genetic origins of essential HTN involve a large number of
genetic variants, reflecting the characteristics of the complex
genetic trait that BP is known for since long.

Variability of the human genome and
principles of genetic mapping
A large fraction of variation of the human genome is contained in
single-nucleotide polymorphisms (SNPs): variation in these variants
is constituted by two, rarely more, different possible nucleotide
bases (alleles) at the same genetic position.25 Considerable add-
itional variation of the human genome exists, e.g. insertions and
deletions (indels), structural variation (e.g. CNVs), and epigenetic
modification.26–28 Although these and other sources of variation
are being tested comprehensively, most endeavour in recent
years have been centred on SNPs because their interrogation at
large scale is now feasible. The microarrays used for these experi-
ments that genotyped tens of thousands of SNPs in their first ver-
sions can interrogate more than 5 million variants today.

Two major methods are used for mapping of disease-associated
variants: linkage and association mapping.29 Linkage mapping iden-
tifies genetic regions and association mapping individual variants.
As described at the beginning of this review, linkage studies have
been tremendously successful in rare hypertensive families and
have permitted to identify monogenic HTN syndromes. Such
studies have also been conducted for essential HTN and
genomic regions of interest were identified, but it has been difficult
to define associated variants in these regions. Among the studies
that have performed large linkage scans on essential HTN were

the BRIGHT study and the Family Blood Pressure Program.30– 33

Based on theoretical considerations, association mapping is
better suited for complex genetic traits,34 and although large
sample sizes were used in linkage experiments (�10 000
samples), larger numbers are necessary to have suitable power
to detect essential HTN-associated variants, and these large
sample sizes are difficult to ascertain in families. Much larger
sample sizes are available for unrelated, population-based
samples and after the technological developments of genotyping
described above, very large GWAS became feasible.

Methods of genome-wide association
studies
The basic methodology currently used to test for association
between BP and hundreds of thousands of SNPs distributed
throughout the entire human genome is deceptively simple: an as-
sociation statistic is calculated between each SNP and the pheno-
type, typically by linear regression for continuous phenotypes or
by logistic regression for dichotomous phenotypes. In the great
majority of studies, an additive genetic model is used.

Number of tests
The statistical practice is different from most other biomedical re-
search in the number of tests performed, the total number of tests
being identical to the number of SNPs, the number of independent
tests is somewhat lower because many SNPs are correlated. This
particular aspect of the GWAS is important, because highly signifi-
cant results can be obtained by chance when performing large
numbers of tests. In order to read complete overlap of SNPs
between studies, genotypes used for current GWAS are typically
imputed to the HapMap datasets, bringing the total number of
available variants to �2.5 million.26,35 For studies on individuals
of European origin, available data indicate that 1 to 2 million effect-
ive tests need to be adjusted for36 in such datasets and P ¼ 5 ×
1028 has become the accepted genome-wide significance thresh-
old.35,37 GWAS based on the imputed datasets using data from
the 1000 Genomes Project have started and will vastly increase
the number of variants, particularly at the lower end of the allele
frequency (1–5%).26

Phenotype adjustments
The phenotype BP is modified by anti-hypertensive pharmacother-
apy: several methods to improve the resulting confounding have
been proposed and used in recent studies. The most frequently
used method is currently the addition of a constant to SBP
(15 mmHg) and diastolic blood pressure (DBP) (10 mmHg) in
the presence of at least one anti-hypertensive medication.38 In
most association studies the phenotype BP is adjusted by the
major readily measurable covariates age, sex, and BMI38– 40 (age3

was also used as a covariate in many studies) and the residual
after correction is used in the association statistic or the co-variates
are directly included in the model.

Common disease—common variants
The two alleles of each SNP have different frequencies in the
population, the less frequent allele being the minor allele. It is
very clear from the HapMap and ENCODE projects that the
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total number of SNPs of a population in an allele frequency bin is
inversely correlated to the minor allele frequency (MAF) and that
most SNPs have a very low MAF.35 For the currently published
GWASs based on imputation on the HapMap backbone, SNPs
with allele frequencies ,5% are insufficiently covered by the tech-
nology, and also have low power. But the currently targeted fre-
quent variants appear particularly attractive targets for complex
disease genomics because they are expected to have a particularly
strong impact on complex phenotypes, as formalized in the
‘common disease—common variant hypothesis’.41– 43

Statistical power of the genome-wide association on blood
pressure
Given the large burden on statistical power incurred by performing
�1 million independent tests, power considerations remain a
central issue to GWAS. Statistical power is proportional to the
sample size, the MAF, and the effect size of the variant on BP
and inversely proportional to the number of tests performed.
Figure 2 shows statistical power in GWASs as a function of the
sample size for three allele frequencies and three scenarios of
effect sizes. Based on the current findings in the BP GWAS (see
Table 3), the effect size of the associated frequent variants
is �1 mmHg for SBP and �0.5 mmHg for DBP, corresponding
to 0.05 SD of the phenotypic distribution. It becomes clear
from Figure 2 that even with the largest BP GWAS to date with
�70 000 individuals,38,44 associated SNPs with an MAF of �5%
have low power (�0.3). For SNPs with more frequent MAF, stat-
istical power is high at these sample sizes. It also becomes clear
from Figure 2 that much larger effect sizes (e.g. 0.5 SD) have

excellent statistical power to be detected in experiments even at
much lower sample sizes, meaning conversely that not finding
those large effect sizes in the current GWASs implies that they
very likely do not exist at these allele frequencies.

Current genome-wide association studies on systolic
blood pressure and diastolic blood pressure
The first large-scale attempt to identify HTN variants by GWAS
was carried out by the Welcome Trust Case Control Consortium
in 2007, but did not identify genome-wide significant variants using
2000 cases and 3000 shared controls.45 Since then, and recognizing
the need for much larger sample sizes, several consortia and indi-
vidual studies have published 43 variants associated with SBP, DBP,
or HTN that could be replicated in independent samples (see
Table 3) using GWAS or similar methods. Reflecting the availability
of samples, most discovery efforts were carried out using the
samples of European origin, such as the CHARGE (Cohorts for
Heart and Aging Research in Genomic Epidemiology) consortium
www.chargeconsortium.com, the Global BP Gen (Global BP Gen-
etics) consortium, and the ICBP (International Consortium for BP
GWAS). Among the large discovery efforts involving participants of
Asian origin are the studies by the Korea Association REsource
consortium and the Asian Genetic Epidemiology Network, and
are experiments using participants of African origin the CARe
(Candidate-gene Association Resource) consortium.

The largest contribution to date in terms of number of loci dis-
covered for SBP, DBP, and HTN is by the ICBP,38 although many
other studies have contributed additional variants and also import-
ant additional information. The ICBP experiment of 2011 included
total discovery GWAS data on 69 395 individuals and further rep-
lication genotyping/look-ups in up to 133 661 subjects. The study
convincingly replicated 13 loci identified in previous, largely over-
lapping studies.40,46 In total, the study described 29 SNPs with
genome-wide significance. Interestingly, all of the alleles increasing
SBP/DBP also increased the risk of HTN. Panel A of Figure 3 shows
the effect sizes for the 29 SNPs for SBP and DBP. Based on these
29 SNPs, it can be seen that with few exceptions all variants are
associated with both SBP and DBP, although differential effects
have been identified in a separate ICBP study.44 Panel B shows
the effect sizes as a function of the allele frequencies. There is a
trend towards larger effect sizes in variants with lower MAFs, al-
though some of these observations might be primed by the
feature that for lower MAF SNPs with larger effect sizes are
more likely to be detected if the sample size remains constant.

Some of the 43 BP SNPs in Table 3 have been identified using a
candidate gene focused array47 and others have used additional
similar technologies. Interestingly, these other experiments illus-
trate that there is more than one strategy to identify gene loci
for common complex cardiovascular disease.

Conclusions from 43 variants for essential hypertension
Several interesting conclusions can be drawn on the genetics of es-
sential HTN based on all significant and replicated variants identi-
fied by the GWAS so far.

(1) The effect sizes are small for each individual genetic variant,
typically 1 mmHg for SBP and 0.5 mmHg for DBP (see

Figure 2 Statistical power in GWAS on continuous traits. The
power of the study is plotted as a function of the sample size for
three different minor allele frequencies (MAFs): MAF 50%
(green), MAF 20% (blue), MAF 5% (red) and for three different
effect sizes expressed in standard deviations (SD) of the pheno-
type: 0.5 SD (continuous line), 0.05 SD (dashed line), and 0.005
SD (dot-dashed line). An alpha of 5 × 1028 was used.
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Table 3 Genetic variants associated with blood pressure by unbiased investigation

Locus name Sentinel SNP chr Position (hg19) CA SBP DBP HTN ethnicity max N

beta P-value beta P-value beta P-value

CASZ168,69 rs880315 1 10 796 866 C 0.61 5.20×109 NA NA NA NA EU, AS 52 155

MTHFR(3′)-NPPB47 rs4846049 1 11 850 365 T NA NA 20.34 3.00×1010 NA NA EU 84 467

MTHFR(5′)-NPPB38,40,70,71 rs17367504 1 11 862 778 G 20.90 8.72×1022 20.55 3.55×1019 20.10 2.34×1010 EU 125 000

ST7L-CAPZA172 rs17030613 1 113 190 807 C 0.49 8.40×108 0.38 1.20×108 NA NA AS 49 952

MOV1038 rs2932538 1 113 216 543 G 0.39 1.17×109 0.24 9.88×1010 0.05 2.89×107 EU, AS 195 000

AGT47,73,74 rs2004776 1 230 848 702 T 0.42 3.80×106 0.32 5.00×108 0.08 3.70×107 EU, AS 86 588

FIGN_GRB1444,72 rs16849225 2 164 906 820 C 0.75 3.50×1010 0.29 2.70×105 NA NA AS, EU 49 511

SLC4A738 rs13082711 3 27 537 909 T 20.32 1.51×106 20.24 3.77×109 20.03 3.56×104 EU 198 000

ULK438,39 rs3774372 3 41 877 414 T 20.07 3.95×101 20.37 9.02×1014 20.02 1.81×101 EU 162 000

MAP444 rs319690 3 47 927 484 T 20.423 4.74×108 20.265 6.88×109 NA NA EU 93 496

MECOM38 rs419076 3 169 100 886 T 0.41 1.78×1013 0.24 2.12×1012 0.03 3.06×104 EU 194 000

FGF538,40,69,72,75 rs1458038 4 81 164 723 T 0.71 1.47×1023 0.46 8.46×1025 0.07 1.85×107 EU, AS 140 000

SLC39A838 rs13107325 4 103 188 709 T 20.98 3.27×1014 20.68 2.28×1017 20.10 4.89×107 EU 151 000

ENPEP72 rs6825911 4 111 381 638 C 0.6 7.30×108 0.39 9.00×109 NA NA AS 49 515

GUCY1A3-1B338 rs13139571 4 156 645 513 C 0.32 1.16×106 0.26 2.17×1010 0.04 2.49×105 EU 185 000

NPR3-C5orf2338,72 rs1173771 5 32 815 028 G 0.50 1.79×1016 0.26 9.11×1012 0.06 3.23×1010 EU, AS 159 000

EBF138 rs11953630 5 157 845 402 T 20.41 3.02×1011 20.28 3.81×1013 20.05 1.68×107 EU 161 000

HFE38 rs1799945 6 26 091 179 G 0.63 7.69×1012 0.46 1.45×1015 0.09 1.76×1010 EU 144 000

BAT2-BAT538 rs805303 6 31 616 366 G 0.38 1.49×1011 0.23 2.98×1011 0.05 1.12×1010 EU 202 000

PIK3CG44 rs17477177 7 106 411 858 T 20.552 5.67×1011 20.081 1.40×101 NA NA EU 112 996

NOS347,76 rs3918226 7 150 690 176 T NA NA 0.78 2.20×109 NA NA EU 84 467

BLK-GATA468 rs2898290 8 11 433 909 C 20.53 3.40×109 NA NA NA NA EU 52 155

CYP11B274 rs1799998 8 143 999 600 T 0.91 1.50×105 0.53 1.80×105 NA NA AS 19 426

CACNB2(5′)38 rs4373814 10 18 419 972 G 20.37 4.81×1011 20.22 4.36×1010 20.05 8.53×108 EU 188 000

CACNB2(3′)38,39,77 rs1813353 10 18 707 448 T 0.57 2.56×1012 0.41 2.30×1015 0.08 6.24×1010 EU, AS 102 000

C10orf10738,40 rs4590817 10 63 467 553 G 0.65 3.97×1012 0.42 1.29×1012 0.10 9.82×109 EU 111 000

PLCE138 rs932764 10 95 895 940 G 0.48 7.10×1016 0.18 8.06×107 0.06 9.35×109 EU 161 000

CYP17A1-NT5C239,40,69,72,75,77,78 rs11191548 10 104 846 178 T 1.10 6.90×1026 0.46 9.44×1013 0.10 1.40×105 EU, AS 162 000

ADRB173 rs1801253 10 115 805 056 G 20.57 4.70×1010 20.36 9.50×1010 20.06 3.30×104 EU 86 588

ADM38 rs7129220 11 10 350 538 G 20.62 2.97×1012 20.30 6.44×108 20.04 1.11×103 EU 183 000

PLEKHA738,46,78 rs381815 11 16 902 268 T 0.57 5.27×1011 0.35 5.34×1010 0.06 3.41×106 EU, AS 97 000

FLJ32810-TMEM13338 rs633185 11 100 593 538 G 20.56 1.21×1017 20.33 1.95×1015 20.07 5.41×1011 EU, AS 160 000

ATP2B138,39,69,75,78–80 rs17249754 12 90 060 586 G 0.93 1.82×1018 0.52 1.16×1014 0.13 1.13×1014 EU, AS 96 000

SH2B338,40,44,81 rs3184504 12 111 884 608 T 0.60 3.83×1018 0.45 3.59×1025 0.06 2.62×106 EU, AF 121 000

ALDH272 rs11066280 12 112 817 783 T 1.56 7.90×1031 1.01 1.30×1035 NA NA AS 46 957

TBX5-TBX338,46,72,81 rs10850411 12 115 387 796 T 0.35 5.38×108 0.25 5.43×1010 0.05 5.18×106 EU, AS 161 000
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Table 3 and Figure 3 for a subset of SNPs). Even collectively, the
29 variants tested in one experiment explain only 1–2% of SBP
and DBP variance.38 With the uncertainty that only a subset of
all BP-associated SNPs has been evaluated collectively, the
heritability of BP is �25× larger than the variation currently
explained by GWAS SNPs. The observation that only little
of the total heritability can currently be explained by the
GWAS is also found for many other traits and has led to the
term ‘missing heritability’.48 It is expected that many more
yet undiscovered loci, possibly including variants in the rare
allele spectrum that might have larger effect sizes, will contrib-
ute to explain the missing heritability. For SNPs with effect
sizes similar to those in Table 3, the total number of variants
underlying BP variation has been estimated to be 116.38 A
risk score of the combined effects of the 29 SNPs is clearly
associated with BP and HTN in multiple populations,38 but
as it explains only little of the overall phenotypic variance it
is unlikely to be useful in HTN risk prediction at this point, al-
though this has not yet been formally tested. More likely im-
mediate use in addition to mechanistic insights and discovery
of targets for intervention is to come from Mendelian random-
ization experiments (see below).

(2) Of the 43 variants significantly associated with SBP, DBP, and
HTN listed in Table 3, a minority is near a gene that is
known to be related to BP. The remaining variants are loca-
lized in genomic regions that were previously completely un-
suspected for their link with BP. Other GWAS consortia
could identify over-represented biological pathways in analyses
using GWAS SNPs,49 but these efforts have not been success-
ful for BP until now, potentially due to intrinsic properties of
the phenotype or to the limited number of variants identified
so far.

(3) Many variants identified are associated not only with indivi-
duals of European origin, but also with people of Asian and
African origin (see Table 3) and although testing in multiple
ethnicities is far from complete, many identified variants have
an impact across ethnicities and the hypothesis of transethnic
validity appears valid.

Mendelian randomization
A genetic risk score associated with BP can be used to investigate
whether the same genetic risk profile is also associated with target
organ damage of BP, notably stroke, heart failure, myocardial in-
farction, and renal failure, or other phenotypes. Such an experi-
ment was conducted based on the 29 ICBP SNPs38 and a
significant association of the genetic risk score with stroke, coron-
ary artery disease, and left ventricular wall thickness could be
shown. In contrast, there was interestingly no association with
five phenotypes of renal disease (prevalent chronic kidney
disease, prevalent microalbuminuria, serum creatinine, estimated
glomerular filtration rate, and urinary albumin/creatinine ratio).
This is an intriguing observation that might indicate that the
impact of HTN on renal failure is less clear than previously
thought. Similar examples of unanticipated absence of association
between GWAS-derived genetic scores and phenotypes have
been published, e.g. recently a report casting further doubt on
the causal role of low HDL in myocardial infarction.50
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Limitations of current blood pressure genome-wide
association studies by genetic and phenotype
heterogeneity
A major limiting factor of GWAS is statistical power and the main
approach to overcome this limitation has been to use the largest
possible sample size in meta-analyses with inclusion of many differ-
ent studies. Twenty-nine different studies were used for the dis-
covery effort of the ICBP38 and other recent GWAS have used
many more studies. Adding many different studies in meta-analyses
can introduce heterogeneity just as heterogeneity can also be
observed in very large single studies. Although the association
results do not show statistical significance in heterogeneity
tests,38 there is potential for population substructure that is partial-
ly corrected for by applying genomic control, but it is not impos-
sible that unrecognized substructure persists.

Blood pressure phenotypes are particularly prone to systematic
measurement differences, either due to different measurement
technology or due to differences in measurement methods.
Although all studies of the current analyses38 ascertained BP
according to a standard protocol and many of the studies have
the best BP phenotype available in BP epidemiology, there are
slight differences in ascertainment with potential impact on

the association results. But again, given the large sample sizes ne-
cessary, the phenotype is probably close to optimal for single
visit analyses, but potentially a more precise adjustment of the
BP values might be possible if primary data were shared across
studies. One striking example on the precision of the phenotype
the Womens’ Genome Health Study that ascertained BP by
patient history in categories (nine for systolic and seven for diastol-
ic). Although the study was not included in the discovery effort of
ICBP, the 29-SNP genetic score is strongly associated with SBP,
DBP, and HTN, suggesting that the phenotype is as precise as
the phenotype carefully ascertained according to the standard
methods in the BRIGHT study.38 It will be interesting to see the
impact of large-scale analyses on more precise BP measurements
(e.g. analyses based on long-term average BP traits or on ambula-
tory BP measurement) and such efforts are underway.

Future studies
Given that only a small fraction of the BP heritability is currently
explained, new experiments are underway to capture additional
trait variability (see Table 4). It is desirable that these efforts are
conducted using large sample sets of European- and non-European
origin. New BP GWAS efforts with increased sample sizes, using

Figure 3 Effect sizes of 29 BP and HTN variants identified by the ICBP consortium. (A) shows the effect sizes for SBP (red) and DBP (blue)
for 29 BP variants identified by the ICBP.38 The locus name is indicated to the left and the effect size (+SD) is indicated on a mmHg scale. (B)
shows the effect size for SBP (red) and DBP (blue) as a function of the risk allele frequency for the same 29 BP variants identified by the GWAS.
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the newly available imputation backbone of the 1000 Genomes
project, will increase statistical power and extend the allele fre-
quency spectrum analysed. Refined phenotypes such as long-term
average and ambulatory BP measurements are interesting to con-
sider. The Illumina Cardio-MetaboChip is a collection of SNPs
from all major cardiovascular, metabolic, and antropometric
GWAS efforts, including BP tagging SNPs up to a P-value of
�0.01.51 A large number of study participants have been geno-
typed on this platform, and it is likely that a sizeable number of
new BP loci are discovered when using these data for association
mapping. To capture the entire spectrum of variants, sequencing
or genotyping has been proposed (targeted sequencing, whole
exome sequencing, whole genome sequencing) and several
studies and consortia [e.g. CHARGE-S, NHLBI Grand Opportunity
Exome Sequencing Project (ESP-GO)] have taken up these chal-
lenges. Very large sample sizes will be necessary to reach sufficient
statistical power. An interesting alternative approach is genotyping
of exomic variants on a microarray because very large sample sizes
can be reached at lower cost. Such experiments are underway (see
Table 4).

Conclusion
Analyses of Mendelian HTN syndromes and GWAS on essential
HTN have contributed and continue to contribute to our under-
standing of the genetics of BP in very different ways. One type
of disease is very rare that it might never be encountered by the
practicing cardiologist, and the other is so frequent that most col-
leagues see it several times every day.

Mendelian syndromes are important to recognize because such
knowledge might lead to specific forms of pharmacotherapy for
the affected individual. The clinical impact of findings of GWAS
on essential HTN is currently undefined, but the knowledge will
help us to understand the mechanisms once genes near the asso-
ciated variants will be identified, which can be used as targets for
pharmacological intervention. Much of the variability still remains
to be explained and many more variants will be identified. For es-
sential HTN, the magnitude of the missing heritability could suggest
that there is a yet unrecognized, but major, mechanism that
remains to be discovered and this mechanism may or may not
be discovered by GWASs.
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