272 research outputs found

    Consequences of epistasis on growth in an erhualian × white duroc pig cross

    Get PDF
    Epistasis describes an interaction between the effects of loci. We included epistasis in quantitative trait locus (QTL) mapping of growth at a series of ages in a cross of a Chinese pig breed, Erhualian, with a commercial line, White Duroc. Erhualian pigs have much lower growth rates than White Duroc. We improved a method for genomewide testing of epistasis and present a clear analysis workflow. We also suggest a new approach for interpreting epistasis results where significant additive and dominance effects of a locus in specific backgrounds are determined. In total, seventeen QTL were found and eleven showed epistasis. Loci on chromosomes 2, 3, 4 and 7 were highlighted as affecting growth at more than one age or forming an interaction network. Epistasis resulted in both the QTL on chromosomes 3 and 7 having effects in opposite directions. We believe it is the first time for the chromosome 7 locus that an allele from a Chinese breed has been found to decrease growth. The consequences of epistasis were diverse. Results were impacted by using growth rather than body weight as the phenotype and by correcting for an effect of mother. Epistasis made a considerable contribution to growth in this population and modelling epistasis was important for accurately determining QTL effects

    Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have performed Quantitative Trait Loci (QTL) analysis of an F<sub>2 </sub>intercross between two chicken lines divergently selected for juvenile body-weight. In a previous study 13 identified loci with effects on body-weight, only explained a small proportion of the large variation in the F<sub>2 </sub>population. Epistatic interaction analysis however, indicated that a network of interacting loci with large effect contributed to the difference in body-weight of the parental lines. This previous analysis was, however, based on a sparse microsatellite linkage map and the limited coverage could have affected the main conclusions. Here we present a revised QTL analysis based on a high-density linkage map that provided a more complete coverage of the chicken genome. Furthermore, we utilized genotype data from ~13,000 SNPs to search the genome for potential selective sweeps that have occurred in the selected lines.</p> <p>Results</p> <p>We constructed a linkage map comprising 434 genetic markers, covering 31 chromosomes but leaving seven microchromosomes uncovered. The analysis showed that seven regions harbor QTL that influence growth. The pair-wise interaction analysis identified 15 unique QTL pairs and notable is that nine of those involved interactions with a locus on chromosome 7, forming a network of interacting loci. The analysis of ~13,000 SNPs showed that a substantial proportion of the genetic variation present in the founder population has been lost in either of the two selected lines since ~60% of the SNPs polymorphic among lines showed fixation in one of the lines. With the current marker coverage and QTL map resolution we did not observe clear signs of selective sweeps within QTL intervals.</p> <p>Conclusion</p> <p>The results from the QTL analysis using the new improved linkage map are to a large extent in concordance with our previous analysis of this pedigree. The difference in body-weight between the parental chicken lines is caused by many QTL each with a small individual effect. Although the increased chromosomal marker coverage did not lead to the identification of additional QTL, we were able to refine the localization of QTL. The importance of epistatic interaction as a mechanism contributing significantly to the remarkable selection response was further strengthened because additional pairs of interacting loci were detected with the improved map.</p

    How To Perform Meaningful Estimates of Genetic Effects

    Get PDF
    Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map

    Replication and Explorations of High-Order Epistasis Using a Large Advanced Intercross Line Pedigree

    Get PDF
    Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F2 intercross between these high– and low–body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait

    A complete classification of epistatic two-locus models

    Get PDF
    Background: The study of epistasis is of great importance in statistical genetics in fields such as linkage and association analysis and QTL mapping. In an effort to classify the types of epistasis in the case of two biallelic loci Li and Reich listed and described all models in the simplest case of 0/ 1 penetrance values. However, they left open the problem of finding a classification of two-locus models with continuous penetrance values. Results: We provide a complete classification of biallelic two-locus models. In addition to solving the classification problem for dichotomous trait disease models, our results apply to any instance where real numbers are assigned to genotypes, and provide a complete framework for studying epistasis in QTL data. Our approach is geometric and we show that there are 387 distinct types of two-locus models, which can be reduced to 69 when symmetry between loci and alleles is accounted for. The model types are defined by 86 circuits, which are linear combinations of genotype values, each of which measures a fundamental unit of interaction. Conclusion: The circuits provide information on epistasis beyond that contained in the additive × additive, additive × dominance, and dominance × dominance interaction terms. We discuss th

    Genome-Wide Effects of Long-Term Divergent Selection

    Get PDF
    To understand the genetic mechanisms leading to phenotypic differentiation, it is important to identify genomic regions under selection. We scanned the genome of two chicken lines from a single trait selection experiment, where 50 generations of selection have resulted in a 9-fold difference in body weight. Analyses of nearly 60,000 SNP markers showed that the effects of selection on the genome are dramatic. The lines were fixed for alternative alleles in more than 50 regions as a result of selection. Another 10 regions displayed strong evidence for ongoing differentiation during the last 10 generations. Many more regions across the genome showed large differences in allele frequency between the lines, indicating that the phenotypic evolution in the lines in 50 generations is the result of an exploitation of standing genetic variation at 100s of loci across the genome

    Fine mapping and replication of QTL in outbred chicken advanced intercross lines

    Get PDF
    Background: Linkage mapping is used to identify genomic regions affecting the expression of complex traits. However, when experimental crosses such as F2 populations or backcrosses are used to map regions containing a Quantitative Trait Locus (QTL), the size of the regions identified remains quite large, i.e. 10 or more Mb. Thus, other experimental strategies are needed to refine the QTL locations. Advanced Intercross Lines (AIL) are produced by repeated intercrossing of F2 animals and successive generations, which decrease linkage disequilibrium in a controlled manner. Although this approach is seen as promising, both to replicate QTL analyses and fine-map QTL, only a few AIL datasets, all originating from inbred founders, have been reported in the literature. Methods: We have produced a nine-generation AIL pedigree (n = 1529) from two outbred chicken lines divergently selected for body weight at eight weeks of age. All animals were weighed at eight weeks of age and genotyped for SNP located in nine genomic regions where significant or suggestive QTL had previously been detected in the F2 population. In parallel, we have developed a novel strategy to analyse the data that uses both genotype and pedigree information of all AIL individuals to replicate the detection of and fine-map QTL affecting juvenile body weight. Results: Five of the nine QTL detected with the original F2 population were confirmed and fine-mapped with the AIL, while for the remaining four, only suggestive evidence of their existence was obtained. All original QTL were confirmed as a single locus, except for one, which split into two linked QTL. Conclusions: Our results indicate that many of the QTL, which are genome-wide significant or suggestive in the analyses of large intercross populations, are true effects that can be replicated and fine-mapped using AIL. Key factors for success are the use of large populations and powerful statistical tools. Moreover, we believe that the statistical methods we have developed to efficiently study outbred AIL populations will increase the number of organisms for which in-depth complex traits can be analyzed

    FastMap: Fast eQTL mapping in homozygous populations

    Get PDF
    Motivation: Gene expression Quantitative Trait Locus (eQTL) mapping measures the association between transcript expression and genotype in order to find genomic locations likely to regulate transcript expression. The availability of both gene expression and high-density genotype data has improved our ability to perform eQTL mapping in inbred mouse and other homozygous populations. However, existing eQTL mapping software does not scale well when the number of transcripts and markers are on the order of 105 and 105–106, respectively

    Epistasis in a Model of Molecular Signal Transduction

    Get PDF
    Biological functions typically involve complex interacting molecular networks, with numerous feedback and regulation loops. How the properties of the system are affected when one, or several of its parts are modified is a question of fundamental interest, with numerous implications for the way we study and understand biological processes and treat diseases. This question can be rephrased in terms of relating genotypes to phenotypes: to what extent does the effect of a genetic variation at one locus depend on genetic variation at all other loci? Systematic quantitative measurements of epistasis – the deviation from additivity in the effect of alleles at different loci – on a given quantitative trait remain a major challenge. Here, we take a complementary approach of studying theoretically the effect of varying multiple parameters in a validated model of molecular signal transduction. To connect with the genotype/phenotype mapping we interpret parameters of the model as different loci with discrete choices of these parameters as alleles, which allows us to systematically examine the dependence of the signaling output – a quantitative trait – on the set of possible allelic combinations. We show quite generally that quantitative traits behave approximately additively (weak epistasis) when alleles correspond to small changes of parameters; epistasis appears as a result of large differences between alleles. When epistasis is relatively strong, it is concentrated in a sparse subset of loci and in low order (e.g. pair-wise) interactions. We find that focusing on interaction between loci that exhibit strong additive effects is an efficient way of identifying most of the epistasis. Our model study defines a theoretical framework for interpretation of experimental data and provides statistical predictions for the structure of genetic interaction expected for moderately complex biological circuits
    corecore