114 research outputs found
Efficient screening for ‘genetic pollution’ in an anthropogenic crested newt hybrid zone
Genetic admixture between endangered native and non-native invasive species poses a complex conservation problem. Decision makers often need to quickly screen large numbers of individuals and distinguish natives from morphologically similar invading species and their genetically admixed offspring. We describe a protocol using the fast and economical Kompetitive Allele Specific PCR (KASP) technology for genotyping on a large scale. We apply this protocol to a case study of hybridization between a native and an invasive crested newt species. Using previously published data, we designed a panel of ten nuclear and one mitochondrial diagnostic SNP markers. We observed only minor differences between KASP and next-generation sequencing data previously produced with the Ion Torrent platform. We briefly discuss practical considerations for tackling the insidious conservation problem of genetic admixture between native and invasive species. The KASP genotyping protocol facilitates policy decision making for the crested newt case and is generally applicable to invasive hybridization with endangered taxa
The Inexorable Spread of a Newly Arisen Neo-Y Chromosome
A newly arisen Y-chromosome can become established in one part of a species range by genetic drift or through the effects of selection on sexually antagonistic alleles. However, it is difficult to explain why it should then spread throughout the species range after this initial episode. As it spreads into new populations, it will actually enter females. It would then be expected to perform poorly since it will have been shaped by the selective regime of the male-only environment from which it came. We address this problem using computer models of hybrid zone dynamics where a neo-XY chromosomal race meets the ancestral karyotype. Our models consider that the neo-Y was established by the fusion of an autosome with the ancestral X-chromosome (thereby creating the Y and the ‘fused X’). Our principal finding is that sexually antagonistic effects of the Y induce indirect selection in favour of the fused X-chromosomes, causing their spread. The Y-chromosome can then spread, protected behind the advancing shield of the fused X distribution. This mode of spread provides a robust explanation of how newly arisen Y-chromosomes can spread. A Y-chromosome would be expected to accumulate mutations that would cause it to be selected against when it is a rare newly arrived migrant. The Y can spread, nevertheless, because of the indirect selection induced by gene flow (which can only be observed in models comprising multiple populations). These results suggest a fundamental re-evaluation of sex-chromosome hybrid zones. The well-understood evolutionary events that initiate the Y-chromosome's degeneration will actually fuel its range expansion
The long-term consequences of hybridization between the two Daphnia species, D. galeata and D. dentifera, in mature habitats
<p>Abstract</p> <p>Background</p> <p>Ecological specializations such as antipredator defense can reinforce morphological and distributional divergence within hybridizing species. Two hybridizing species of <it>Daphnia </it>(<it>D. galeata </it>and <it>D. dentifera</it>) are distributed in both Japan and North America; however, these populations have a longer history in Japan than in North America due to the differing impact of the last glaciation on these two regions. We tested the hypothesis that this longer coexistence in Japan would lead to extensive genetic admixture in nuclear and mitochondrial DNA whilst the distinct morphological traits and distributional patterns would be maintained.</p> <p>Results</p> <p>The high level of correspondence among morphological traits, distribution, and mitochondrial and nuclear DNA types for the specimens with <it>D. dentifera </it>mtDNA indicated that the species distinction has been maintained. However, a discordance between mtDNA and nuclear ITS-1 types was observed for most specimens that had <it>D. galeata </it>mtDNA, consistent with the pattern seen between the two species in North America. This observation suggests nuclear introgression from <it>D. dentifera </it>into <it>D. galeata </it>without mitochondrial introgression.</p> <p>Conclusions</p> <p>The separation of morphological traits and distribution ranges of the two hybridizing species in Japan, as well as in North America, has been maintained, despite large differences in climatic and geographical histories of these two regions. Variations in environmental factors, such as predation pressure, might affect maintenance of the distribution, although the further studies are needed to confirm this.</p
Genomic Signature-Based Identification of Influenza A Viruses Using RT-PCR/Electro-Spray Ionization Mass Spectrometry (ESI-MS) Technology
BACKGROUND: The emergence and rapid spread of the 2009 H1N1 pandemic influenza A virus (H1N1pdm) in humans highlights the importance of enhancing the capability of existing influenza surveillance systems with tools for rapid identification of emerging and re-emerging viruses. One of the new approaches is the RT-PCR electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology, which is based on analysis of base composition (BC) of RT-PCR amplicons from influenza "core" genes. Combination of the BC signatures represents a "genomic print" of an influenza A virus. METHODOLOGY/PRINCIPAL FINDINGS: Here, 757 samples collected between 2006 and 2009 were tested, including 302 seasonal H1N1, 171 H3N2, 7 swine triple reassortants, and 277 H1N1pdm viruses. Of the 277 H1N1pdm samples, 209 were clinical specimens (throat, nasal and nasopharyngeal swabs, nasal washes, blood and sputum). BC signatures for the clinical specimen from one of the first cases of the 2009 pandemic, A/California/04/2009, confirmed it as an unusual, previously unrecognized influenza A virus, with "core" genes related to viruses of avian, human and swine origins. Subsequent analysis of additional 276 H1N1pdm samples revealed that they shared the genomic print of A/California/04/2009, which differed from those of North American swine triple reassortant viruses, seasonal H1N1 and H3N2 and other viruses tested. Moreover, this assay allowed distinction between "core" genes of co-circulating groups of seasonal H1N1, such as clades 2B, 2C, and their reassortants with dual antiviral resistance to adamantanes and oseltamivir. CONCLUSIONS/SIGNIFICANCE: The RT-PCR/ESI-MS assay is a broad range influenza identification tool that can be used directly on clinical specimens for rapid and accurate detection of influenza virus genes. The assay differentiates the H1N1pdm from seasonal and other nonhuman hosts viruses. Although not a diagnostic tool, this assay demonstrates its usefulness and robustness in influenza virus surveillance and detection of novel and unusual viruses with previously unseen genomic prints
Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica
Genome duplication is widespread in wild and crop plants. However, little is known about genome-wide selection in polyploids due to the complexity of duplicated genomes. In polyploids, the patterns of purifying selection and adaptive substitutions may be affected by masking owing to duplicated genes or homeologs as well as effective population size. Here, we resequence 25 accessions of the allotetraploid Arabidopsis kamchatica, which is derived from the diploid species A. halleri and A. lyrata. We observe a reduction in purifying selection compared with the parental species. Interestingly, proportions of adaptive non-synonymous substitutions are significantly positive in contrast to most plant species. A recurrent pattern observed in both frequency and divergence–diversity neutrality tests is that the genome-wide distributions of both subgenomes are similar, but the correlation between homeologous pairs is low. This may increase the opportunity of different evolutionary trajectories such as in the HMA4 gene involved in heavy metal hyperaccumulation
Speciation in the Deep Sea: Multi-Locus Analysis of Divergence and Gene Flow between Two Hybridizing Species of Hydrothermal Vent Mussels
International audienceBackground: Reconstructing the history of divergence and gene flow between closely-related organisms has long been a difficult task of evolutionary genetics. Recently, new approaches based on the coalescence theory have been developed to test the existence of gene flow during the process of divergence. The deep sea is a motivating place to apply these new approaches. Differentiation by adaptation can be driven by the heterogeneity of the hydrothermal environment while populations should not have been strongly perturbed by climatic oscillations, the main cause of geographic isolation at the surface. Methodology/Principal Finding: Samples of DNA sequences were obtained for seven nuclear loci and a mitochondrial locus in order to conduct a multi-locus analysis of divergence and gene flow between two closely related and hybridizing species of hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis. The analysis revealed that (i) the two species have started to diverge approximately 0.760 million years ago, (ii) the B. azoricus population size was 2 to 5 time greater than the B. puteoserpentis and the ancestral population and (iii) gene flow between the two species occurred over the complete species range and was mainly asymmetric, at least for the chromosomal regions studied. Conclusions/Significance: A long history of gene flow has been detected between the two Bathymodiolus species. However, it proved very difficult to conclusively distinguish secondary introgression from ongoing parapatric differentiation. As powerful as coalescence approaches could be, we are left by the fact that natural populations often deviates from standard assumptions of the underlying model. A more direct observation of the history of recombination at one of the seven loci studied suggests an initial period of allopatric differentiation during which recombination was blocked between lineages. Even in the deep sea, geographic isolation may well be a crucial promoter of speciation
A chromosome-scale genome assembly of European hazel (Corylus avellana L.) reveals targets for crop improvement
The European hazelnut (Corylus avellana L.) is a tree crop of economic importance worldwide, but especially for northern Turkey, where the majority of production takes place. Hazelnut production is currently challenged by environmental stresses, such as a recent outbreak of severe powdery mildew disease; furthermore, allergy to hazelnuts is an increasing health concern in some regions. In order to provide a foundation for using the available hazelnut genetic resources for crop improvement, we produced a fully assembled genome sequence and annotation for a hazelnut species, from C. avellana cv. ‘Tombul’, one of the most important Turkish varieties. A hybrid sequencing strategy, combining short reads, long reads and proximity ligation methods, enabled us to resolve heterozygous regions and produce a high‐quality 370‐Mb assembly that agrees closely with cytogenetic studies and genetic maps of the 11 C. avellana chromosomes, and covers 97.8% of the estimated genome size. The genome includes 27 270 high‐confidence protein‐coding genes, over 20 000 of which were functionally annotated based on homology with known plant proteins. We focused particularly on gene families encoding hazelnut allergens, and the Mildew resistance Locus O (MLO) proteins that are an important susceptibility factor for powdery mildew. The complete assembly enabled us to differentiate between members of these families and to identify homologues that may be important in mildew disease and hazelnut allergy. These findings provide examples of how the genome can be used to guide research and to develop effective strategies for crop improvement in C. avellana
Firearm purchasing and firearm violence during the coronavirus pandemic in the United States: a cross-sectional study.
BackgroundFirearm violence is a significant public health problem in the United States. A surge in firearm purchasing following the onset of the coronavirus pandemic may have contributed to an increase in firearm violence. We sought to estimate the state-level association between firearm purchasing and interpersonal firearm violence during the pandemic.MethodsCross-sectional study of the 48 contiguous states and the District of Columbia from January 2018 through July 2020. Data were obtained from the National Instant Criminal Background Check System (a proxy for firearm purchasing) and the Gun Violence Archive. Using negative binomial regression models, we estimated the association between cumulative excess firearm purchases in March through July 2020 (measured as the difference between observed rates and those expected from autoregressive integrated moving average models) and injuries (including nonfatal and fatal) from intentional, interpersonal firearm violence (non-domestic and domestic violence).ResultsWe estimated that there were 4.3 million excess firearm purchases nationally from March through July 2020 and a total of 4075 more firearm injuries than expected from April through July. We found no relationship between state-level excess purchasing and non-domestic firearm violence, e.g., each excess purchase per 100 population was associated with a rate ratio (RR) of firearm injury from non-domestic violence of 0.76 (95% CI: 0.50-1.02) in April; 0.99 (95% CI: 0.72-1.25) in May; 1.10 (95% CI: 0.93-1.32) in June; and 0.98 (95% CI: 0.85-1.12) in July. Excess firearm purchasing within states was associated with an increase in firearm injuries from domestic violence in April (RR: 2.60; 95% CI: 1.32-5.93) and May (RR: 1.79; 95% CI: 1.19-2.91), though estimates were sensitive to model specification.ConclusionsNationwide, firearm purchasing and firearm violence increased substantially during the first months of the coronavirus pandemic. At the state level, the magnitude of the increase in purchasing was not associated with the magnitude of the increase in firearm violence. Increases in purchasing may have contributed to additional firearm injuries from domestic violence in April and May. Results suggest much of the rise in firearm violence during our study period was attributable to other factors, indicating a need for additional research
- …