892 research outputs found

    What fraction of the Pacific and Indian oceans' deep water is formed in the Southern Ocean?

    Get PDF
    Wally Broecker acknowledges funding from the Comer Science and Education Foundation. James W. B. Rae acknowledges funding from NERC standard grants NE/N003861/1 and NE/N011716/1, and support from the School of Earth and Environmental Sciences at the University of St Andrews during Wally Broecker’s visit, which sparked the discussions that led to this paper.In this contribution we explore constraints on the fractions of deep water present in the Indian and Pacific oceans which originated in the northern Atlantic and in the Southern Ocean. Based on PO4* we show that if ventilated Antarctic shelf waters characterize the Southern contribution, then the proportions could be close to 50–50. If instead a Southern Ocean bottom water value is used, the Southern contribution is increased to 75 %. While this larger estimate may best characterize the volume of water entering the Indo-Pacific from the Southern Ocean, it contains a significant portion of entrained northern water. We also note that ventilation may be highly tracer dependent: for instance Southern Ocean waters may contribute only 35 % of the deep radiocarbon budget, even if their volumetric contribution is 75 %. In our estimation, the most promising approaches involve using CFC-11 to constrain the amount of deep water formed in the Southern Ocean. Finally, we highlight the broad utility of PO4* as a tracer of deep water masses, including descending plumes of Antarctic Bottom Water and large-scale patterns of deep ocean mixing, and as a tracer of the efficiency of the biological pump.Publisher PDFPeer reviewe

    Atlantic Ocean circulation during the Younger Dryas : insights from a new Cd/Ca record from the western subtropical South Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 18 (2003): 1086, doi:10.1029/2003PA000888.Benthic foraminiferal Cd/Ca from an intermediate depth, western South Atlantic core documents the history of southward penetration of North Atlantic Intermediate Water (NAIW). Cd seawater estimates (CdW) for the last glacial are consistent with the production of NAIW and its export into the South Atlantic. At ∼14.5 ka concurrently with the onset of the Bølling-Allerød to Younger Dryas cooling, the NAIW contribution to the South Atlantic began to decrease, marking the transition from a glacial circulation pattern to a Younger Dryas circulation. High CdW in both the deep North Atlantic and the intermediate South Atlantic imply reduced export of deep and intermediate water during the Younger Dryas and a significant decrease in northward oceanic heat transport. A modern circulation was achieved at ∼9 ka, concurrently with the establishment of Holocene warmth in the North Atlantic region, further supporting a close linkage between deepwater variability and North Atlantic climate.This work was supported by an MIT John Lyons Fellowship, a WHOI Ocean and Climate Change Institute Fellowship, and NSF grant OCE96-33499

    Icebergs in the North Atlantic: Modelling circulation changes and glacio-marine deposition

    Get PDF
    In order to investigate meltwater events in the North Atlantic, a simple iceberg generation, drift, and melting routine was implemented in a high-resolution OGCM. Starting from the modelled last glacial state, every 25th day cylindrical model icebergs 300 meters high were released at 32 specific points along the coasts. Icebergs launched at the Barents Shelf margin spread a light meltwater lid over the Norwegian and Greenland Seas, shutting down the deep convection and the anti-clockwise circulation in this area. Due to the constraining ocean circulation, the icebergs produce a tongue of relatively cold and fresh water extending eastward from Hudson Strait that must develop at this location, regardless of iceberg origin. From the total amount of freshwater inferred by the icebergs, the thickness of the deposited IRD could be calculated in dependance of iceberg sediment concentration. In this way, typical extent and thickness of Heinrich layers could be reproduced, running the model for 250 years of steady state with constant iceberg meltwater inflow

    Evaluation of the National Oceanic and Atmospheric Administration/Coupled-Ocean Atmospheric Response Experiment (NOAA/COARE) air-sea gas transfer parameterization using GasEx data

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S11, doi:10.1029/2003JC001831.During the two recent GasEx field experiments, direct covariance measurements of air-sea carbon dioxide fluxes were obtained over the open ocean. Concurrently, the National Oceanic and Atmospheric Administration/Coupled-Ocean Atmospheric Response Experiment air-sea gas transfer parameterization was developed to predict gas transfer velocities from measurements of the bulk state of the sea surface and atmosphere. The model output is combined with measurements of the mean air and sea surface carbon dioxide fugacities to provide estimates of the air-sea CO2 flux, and the model is then tuned to the GasEx-1998 data set. Because of differences in the local environment and possibly because of weaknesses in the model, some discrepancies are observed between the predicted fluxes from the GasEx-1998 and GasEx-2001 cases. To provide an estimate of the contribution to the air-sea flux of gas due to wave-breaking processes, the whitecap and bubble parameterizations are removed from the model output. These results show that moderate (approximately 15 m s−1) wind speed breaking wave gas transfer processes account for a fourfold increase in the flux over the modeled interfacial processes.This work was supported by the NOAA Office of Global Programs, under the leadership of Dr. Lisa Dilling. WHOI was supported by the National Science Foundation grant OCE-9711218

    Evidence from the Florida Straits for Younger Dryas ocean circulation changes

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA1205, doi:10.1029/2010PA002032.The waters passing through the Florida Straits today reflect both the western portion of the wind-driven subtropical gyre and the northward flow of the upper waters which cross the equator, compensating North Atlantic Deep Water export as part of the large-scale Atlantic meridional overturning circulation. It has been postulated from various lines of evidence that the overturning circulation was weaker during the Younger Dryas cold event of the last deglaciation. We show here that the contrast in the oxygen isotopic composition of benthic foraminiferal tests across the Florida Current is reduced during the Younger Dryas. This most likely reflects a decrease in the density gradient across the channel and a decrease in the vertical shear of the Florida Current. This reduced shear is consistent with the postulated reduction in the Atlantic meridional overturning circulation. We find that the onset of this change in density structure and flow at the start of the Younger Dryas is very abrupt, occurring in less than 70 years.We thank the National Science Foundation (grants OCE‐0648258 and OCE‐0096472) and the Comer Science and Education Foundation for supporting this research. MWS was supported by a NOAA Global Change Postdoctoral Fellowship

    A Human Development Framework for CO2 Reductions

    Get PDF
    Although developing countries are called to participate in CO2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300Gt of cumulative CO2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20% to 30% of previously calculated CO2 budgets limiting global warming to 2{\deg}C. These constraints and results are incorporated into a CO2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2{\deg}C target after a particular development threshold is reached. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100Gt of CO2. These values are within the uncertainty range of emissions to limit global temperatures to 2{\deg}C.Comment: 14 pages, 7 figures, 1 tabl

    Overestimate of Committed Warming

    Get PDF
    Palaeoclimate variations are an essential component in constraining future projections of climate change as a function of increasing anthropogenic greenhouse gases. The Earth System Sensitivity (ESS) describes the multi-millennial response of Earth (in terms of global mean temperature) to a doubling of CO2 concentrations. A recent study used a correlation of inferred temperatures and radiative forcing from greenhouse gases over the past 800,000 years to estimate the ESS from present day CO2 is about 9 degrees C, and to imply a long-term commitment of 3-7 degrees C even if greenhouse gas levels remain at present-day concentrations. However, we demonstrate that the methodology of ref. 2 does not reliably estimate the ESS in the presence of orbital forcing of ice age cycles and therefore conclude that the inferred present-day committed warming is considerably overestimated

    The spatial distribution of aeolian dust and terrigenous fluxes in the tropical Atlantic Ocean since the Last Glacial Maximum

    Get PDF
    © 2021. American Geophysical Union. All Rights Reserved. The flux of terrestrial material from the continents to the oceans links the lithosphere, hydrosphere, and biosphere through physical and biogeochemical processes, with important implications for Earth's climate. Quantitative estimates of terrigenous fluxes from sources such as rivers, aeolian dust, and resuspended shelf sediments are required to understand how the processes delivering terrigenous material respond to and are influenced by climate. We compile thorium-230 normalized 232Th flux records in the tropical Atlantic to provide an improved understanding of aeolian fluxes since the Last Glacial Maximum (LGM). By identifying and isolating sites dominated by aeolian terrigenous inputs, we show that there was a persistent meridional gradient in dust fluxes in the eastern equatorial Atlantic at the LGM, arguing against a large southward shift of the intertropical convergence zone during LGM boreal winter. The ratio of LGM to late-Holocene 232Th fluxes highlights a meridional difference in the magnitude of variations in dust deposition, with sites 700 km away, characterized by 232Th fluxes approximately twice as large as aeolian-dominated sites in the east
    corecore