
Bio-inspired multi-robot coordination

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy by

Bastian Broecker

July 2018

Contents

Preface xv

Abstract xvii

Acknowledgements xix

1 Introduction 1

1.1 Bio Inspired Multi-robot Coordination . 1

1.2 Research Questions and Contributions . 4

1.3 Thesis Outline . 6

2 Preliminaries 9

2.1 Bio Inspiration . 9

2.1.1 Stigmergic Behaviour of Ants . 9

2.1.2 Foraging Behaviour of Honeybees 10

2.1.3 Pheromone Signalling Behaviour of Honeybees 11

2.2 Neural Networks . 12

2.2.1 Basic Concept . 12

2.2.2 Topologies . 13

Feed-Forward Network . 13

Recurrent Neural Network . 14

2.2.3 Training . 14

2.2.4 Long Short-Term Memory . 15

2.3 Reinforcements Learning . 16

2.3.1 Overview . 16

2.3.2 Deep Reinforcement Learning . 17

2.4 Monte Carlo Localisation . 19

2.5 UWB Distance Estimation . 21

2.6 Quadrotor Control . 23

2.6.1 MAV Coordinate Frames . 23

2.6.2 Quadcopter System Model . 24

2.6.3 Feedback Control . 28

2.6.4 Quadrotor Angular Velocity Control using PID 30

2.6.5 Cascaded PID Control . 31

2.7 Conclusion . 32

iii

3 Related Work 33

3.1 Coordination and Coverage Techniques . 33

3.2 Ant Inspired Techniques . 35

3.3 Bee Inspired Techniques . 36

3.4 StiCo . 38

3.4.1 StiCo Principle . 38

3.5 Collision Avoidance . 39

3.6 Conclusion . 40

4 Bee Pheromone Based Coverage 41

4.1 Introduction . 41

4.2 Pheromone Signalling Based Coverage Technique 42

4.3 Simulation . 46

4.3.1 Structure . 46

4.3.2 Ant Pheromone Simulation . 47

4.4 Evaluation Environment and Experimental Results 48

4.4.1 Coverage Metrices . 48

4.4.2 Environment . 49

4.4.3 StiCo Parameters . 50

4.4.4 Experimental Results . 51

4.5 Conclusions . 60

5 Hybrid Bee and Ant Inspired Coverage 61

5.1 Comparison Between StiCo and BeePCo 61

5.1.1 Characteristics Differences Between BeePCo and StiCo 61

5.1.2 StiCo Coverage Performance . 62

5.1.3 BeePCo Coverage Performance . 63

5.2 HybaCo: Hybrid Bee and Ant Pheromone Coverage 63

5.3 Experimental Evaluation . 64

5.3.1 Experimental Setup . 64

5.3.2 Sensor Coverage . 66

5.3.3 Distribution Over Time . 68

5.3.4 Ant and Bee Pheromone Usage . 71

5.3.5 Pheromone-Decay Parameter Sensitivity and Tuning 73

5.4 Discussion . 75

5.5 Conclusions . 77

6 Insect-Inspired Multi-Robot Coverage in Complex Environments 79

6.1 Environments . 79

6.2 Experimental Evaluation . 81

6.2.1 Experimental Setup . 81

6.2.2 Sensor Coverage . 82

6.2.3 Distribution Over Time . 85

6.3 Discussion . 90

6.4 Conclusions . 92

7 Distance-based Multi-robot Coordination on Pocket Drones 93

7.1 Introduction . 94

iv

7.2 Drone . 95

7.2.1 Specifications . 95

7.2.2 Velocity estimation and control . 96

7.3 Ultra Wide-Band Distance Calculation . 98

7.3.1 Hardware . 98

7.3.2 UWB Noise Model . 99

7.3.3 Communication Protocol . 99

7.4 Model . 101

7.4.1 Terminology and Assumptions . 102

7.4.2 Recurrent Network Model . 104

7.4.3 Particle Filter . 106

7.4.4 Deep Q-Network . 107

7.5 Training . 109

7.5.1 Simulation . 109

7.5.2 Frame Skipping . 109

7.5.3 Recurrent Neural Network . 109

7.5.4 Deep Q-Network . 111

7.6 Simulation Experiments . 114

7.6.1 Evaluated Configurations . 114

7.6.2 Pose Estimation . 115

7.6.3 Navigation Performance . 118

7.7 Computational Overhead . 119

7.8 Real-world Experiments . 120

7.8.1 Position Accuracy . 120

7.8.2 Navigation . 124

7.9 Discussion . 127

7.10 Conclusion . 127

8 Conclusions and Future Work 129

8.1 Contributions . 130

8.2 Future Work . 131

8.3 Publications . 132

A Extended Experiments Chapter 6 133

A.1 Coverage . 133

A.2 Distribution over time . 142

B Hardware Design and Software/Hardware Repositories 147

Bibliography 149

v

Illustrations

List of Figures

1.1 Reconfigurable ATRON modules . 1

1.2 Swarm formations with 1000 kilobots. A: Illustrates the kilo-robot platform.

It employs three rigid legs in combination with vibration motors for move-

ment and uses infra-red emitter and receive for direct communication. B:

Illustrates the progression of the swarm formation. The robots start in a

random group formation and converge slowly towards the desired shape. . . 3

1.3 Behaviour of social insects. 4

2.1 A: The first ant finds a food-source, than the ant reaches the Nest, leaving

a pheromone trail. B: Other ants follow the one of four possible paths. C:

The ants are following the shortest path. 10

2.2 A: Shows the bee-dance. The angle relative to the sun indicates the direction

and the duration of the wiggle informs of the distance to the food source. B:

Shows the path integration to estimate the shortest path back to the hive. . 11

2.3 A: Shows the general structure, the input-layer and the output-layer of an

ANN. B: illustrates in more detail the operations inside a singular neuron. . 13

2.4 Example of activation functions. 13

2.5 Feed-Forward Neural Network . 14

2.6 Recurrent Neural Network . 14

2.7 LSTM-cell . 15

2.8 . 17

2.9 Monte Carlo Localisation: (A) shows the initialisation of the particles, (B)

illustrates the particle states after the first moves and sensor updates and

(C) presents the converging towards the actual robot position. 20

2.10 Signal encoding . 22

2.11 . 23

2.12 MAV Coordinate Frames. 24

2.13 Quadrotor motor torque and upward-downward forces. 25

2.14 Quadcopter control: this diagram shows how varying the speeds of each

motor results in a corresponding movement, thick arrows indicate increased

speed. Note the coupled rotational and translations movements on the pitch

and roll axes. 26

2.15 Block diagram of a typical feedback control problem 29

2.16 Block diagram of a Proportional Integral Derivative (PID) controller 30

2.17 The general high-level system architecture for an autonomous MAV. 31

3.1 StiCo coordination principle: (a) robots circle around. (b) the right robot

detects pheromone. (c) the right robot changes circling direction. 39

vii

4.1 Simulator structure . 47

4.2 Simplified visualisation of the pheromone simulation. Each grid-cell repre-

sents the pheromone level at that position and the pheromone linear decayed

over time. 48

4.3 Simplified heat-map visualisation: (A) shows a scenario where the robot

is staying in one location for the whole duration of the experiment. (B)

illustrates a scenario where the robot visited each cell the same amount of

time. 49

4.4 (A) shows an E-Pucks robot, modelled by simulation. (B) illustrates the

squared test-environment with the start position in the center. 50

4.5 A: Shows a slow pheromone decay. B: Shows an optimal pheromone decay.

C: Shows a fast pheromone decay. 51

4.6 The distribution of robots in the arena using a MRS of 10 robots on StiCo

and BeePCo algorithms. 52

4.7 The distribution of robots in the arena using a MRS of 20 robots on StiCo

and BeePCo algorithms. 52

4.8 The distribution of robots in the arena using a MRS of 30 robots on StiCo

and BeePCo techniques. 53

4.9 The distribution of robots in the arena using a MRS of 40 robots on StiCo

and BeePCo techniques. 53

4.10 . 54

4.11 . 55

4.12 . 56

4.13 . 57

4.14 This plot shows the competing percentages of area coverage, using MRSs

with 10, 20, 30 and 40 robots: StiCo and BeePCo 58

4.15 Standard deviation over all cells, for 10, 20, 30 and 40 robots. 59

5.1 StiCo problem: Robot surrounded by pheromone. 63

5.2 The percentage of area coverage using BeePCo, StiCo and HybaCo with 10

and 20 robots. The plot illustrate the mean and the error-bars the standard

deviation over 30 runs. 65

5.3 The percentage of area coverage using BeePCo, StiCo and HybaCo with 10

and 20 robots. The plot illustrate the mean and the error-bars the standard

deviation over 30 runs. 66

5.4 . 67

5.5 The distribution over time, using 10, 20 ,30 and 40 robots. The coverage

is illustrated in a gradient color scheme. A cell is coloured white, if it is

covered 100% of the run time and coloured black for a 0% coverage. The

intermediate percentages are coloured accordingly to the scale at the top of

the figure. 70

viii

5.6 The percentage of the total run-time, the bee- and ant-pheromone algorithms

are active. 71

5.7 Activation-times of ant- and bee-pheromone principles during a single run

of HybaCo. 72

5.8 Illustrates the different standard deviations, between the cells, for different

settings of HybaCo’s half-life period parameter ht. 73

5.9 Illustrates HybaCo’s sensor coverage performance for 10, 20, 30 and 40 robots

over a run, with respect to different settings of HybaCo’s half-life period

parameter ht. 76

6.1 The four environments used in the experiments. The red lines show the

symmetry axes of the environments and the black dash-lines illustrate the

square the robots are initialised in. 80

6.2 Compares the achieved area coverage between the environments, using 40 robots. . 83

6.3 Compares the achieved area coverage between BeePCo, HybaCo and StiCo, using

40 robots. 84

6.4 The distribution over time, in the different arenas, using 20 robots. The

coverage is illustrated in a gradient color scheme. A cell is coloured white,

if it is covered 100% of the run time and coloured black for a 0% coverage.

The intermediate percentages are coloured accordingly to the scale at the

top of the figure. 86

6.5 The distribution over time, in the different arenas, using 40 robots. The

coverage is illustrated in a gradient color scheme. A cell is coloured white,

if it is covered 100% of the run time and coloured black for a 0% coverage.

The intermediate percentages are coloured accordingly to the scale at the

top of the figure. 87

6.6 Compares the standard deviation over all cells, in order to show how evenly the area

is covered by BeePCo, StiCo and HybaCo with respect to a specific environment. . 88

6.7 Compares standard deviation over all cells and shows how evenly each environment

is covered, with respect to a specific pheromone coverage approach. 89

7.1 Employed drone named crazyflie. Right image shows a crazyfie with motion

tracking markers, necessary to track position and orientation of the drone. . 96

7.2 Simplified motion tracking rig. Cameras (red boxed) are placed around the

capture volume. Each camera emits IR-light, which bounces from the re-

flective markers of the object into the image-sensors of the cameras. If the

system find at least two images showing the same marker, it is able to trian-

gulate the marker position in 3D. The system requires at least three markers

to estimate the objects orientation. 96

ix

7.3 Optical flow sensor: The system is able to measure the linear velocity of

the drone, by tracking the movement of features (flower) in two consecutive

images. By knowing the field of field (dashed lines) of the camera and the

altitude of the drone, the system is able to estimate the velocity. 97

7.4 Hierarchy of drone controllers. The dashed line marks the border between the

native drone controllers at the bottom and the newly added linear velocity

controller and the proposed model at the top. 97

7.5 A: Shows the schematic designed to connect the UWB-module to the drone.

B: Shows the module (DWM1000), surrounded by the red rectangle, con-

nected to the crazyflie. 99

7.6 Architecture and data flow of the employed model. 101

7.7 Estimation of the objects position and orientation, provided by the RNN. . . 104

7.8 In this example only errors of k > 4 are back propagated through the network.110

7.9 Converging behaviour based on the number of states considered for the update.111

7.10 DQN’s average estimated reward over 100 randomly selected states. 112

7.11 Error distribution achieved by different estimation configurations, in respect

to distance and orientation estimation. 115

7.12 Performance over a single run . 117

7.13 Employed motion capture system to provide the drones with velocity infor-

mation and for recording position informations for post-performance evalu-

ation. The tracking cameras can be seen in the top-part of the image. 120

7.14 Error distribution achieved by different estimation configurations, in respect

to distance and orientation estimation. 122

7.15 Performance over a single run . 124

7.16 Fixed goal-point scenarios. 125

7.17 Path-recordings of the real-world tests. 126

A.1 Compares the achieved area coverage between the environment, using 10 robots. . . 134

A.2 Compares the achieved area coverage between the environment, using 20 robots. . . 135

A.3 Compares the achieved area coverage between the environment, using 30 robots. . . 136

A.4 Compares the achieved area coverage between the environment, using 40 robots. . . 137

A.5 Compares the achieved area coverage between BeePCo, HybaCo and StiCo, using

10 robots. 138

A.6 Compares the achieved area coverage between BeePCo, HybaCo and StiCo, using

20 robots. 139

A.7 Compares the achieved area coverage between BeePCo, HybaCo and StiCo, using

30 robots. 140

A.8 Compares the achieved area coverage between BeePCo, HybaCo and StiCo, using

40 robots. 141

x

A.9 The distribution over time, in the different arenas, using 10 robots. The

coverage is illustrated in a gradient color scheme. A cell is coloured white,

if it is covered 100% of the run time and coloured black for a 0% coverage.

The intermediate percentages are colour accordingly to the scale at the top

of the figure. 143

A.10 The distribution over time, in the different arenas, using 20 robots. The

coverage is illustrated in a gradient color scheme. A cell is coloured white,

if it is covered 100% of the run time and coloured black for a 0% coverage.

The intermediate percentages are coloured accordingly to the scale at the

top of the figure. 144

A.11 The distribution over time, in the different arenas, using 30 robots. The

coverage is illustrated in a gradient color scheme. A cell is coloured white,

if it is covered 100% of the run time and coloured black for a 0% coverage.

The intermediate percentages are coloured accordingly to the scale at the

top of the figure. 145

A.12 The distribution over time, in the different arenas, using 40 robots. The

coverage is illustrated in a gradient color scheme. A cell is coloured white,

if it is covered 100% of the run time and coloured black for a 0% coverage.

The intermediate percentages are coloured accordingly to the scale at the

top of the figure. 146

B.1 Layout of the board. Files can be found under: https://github.com/

bbroecker/dmrc_hardware . 148

B.2 Schematic showing the connections required to combine the crazyflie with the

DWM1000 module. (See repository at https://github.com/bbroecker/

dmrc_hardware) . 148

List of Tables

4.1 Ant-pheromone simulation parameters . 47

4.2 StiCo parameter settings . 51

4.3 Mann-Whitney U-test regarding the cell coverage standard deviation be-

tween StiCo and BeePCo. A p < 0.05 indicated a significant difference

between the results and rejects the hypothesis. 60

5.1 Differences between StiCo and BeePCo . 62

5.2 BeePCo’s, StiCo’s and HybaCo’s configuration 65

5.3 Mann-Whitney U-test regarding the cell coverage standard deviation be-

tween StiCo and HybaCo. A p < 0.05 indicated a significant difference

between the results and rejects the hypothesis. 69

xi

https://github.com/bbroecker/dmrc_hardware
https://github.com/bbroecker/dmrc_hardware
https://github.com/bbroecker/dmrc_hardware
https://github.com/bbroecker/dmrc_hardware

5.4 Mann-Whitney U-test regarding the average cell coverage between StiCo and

HybaCo. A p < 0.05 indicated a significant difference between the results

and rejects the hypothesis. 69

5.5 Illustrates the different standard deviations, between the cells, for different

settings of HybaCo’s half-life period parameter ht. 74

6.1 Environment areas . 80

6.2 Algorithm parameters . 82

6.3 Maximal Sensor Coverage . 90

6.4 Percentage of total run-time required to converge to a stable coverage state. 91

6.5 Standard Deviation . 92

7.1 Terminology Chapter 7 . 103

7.2 Particle filter Parameters . 106

7.3 Parameters employed to train the recurrent neural network. 111

7.4 Parameters employed to train the Deep Q-Network. 113

7.5 Settings employed in evaluation. 114

7.6 Mean-error and standard deviation (position estimation). 116

7.7 Mean-error and standard deviation (orientation estimation). 116

7.8 Average goals per minute achieved in a run. 118

7.9 Percentage of completed runs, in respect to the different estimation configu-

rations. 119

7.10 Computation time each configuration requires to estimate the positions of 1

- 3 drones. 119

7.11 Settings employed in evaluation. 121

7.12 Mean-error and standard deviation (orientation estimation). 123

7.13 Mean-error and standard deviation (orientation estimation). 123

7.14 Illustrates the percentage of total run-time (120 s), the drones using the

reduced velocity-strategy, in order to avoid collisions. 126

B.1 Used components and their specification. 147

xii

Notations

The following notations and abbreviations are found throughout this thesis:

ABC Artificial Bee Colony.

ACO Ant Colony Optimisation.

ANN Artificial Neural networks.

AODV Ad-hoc On-demand Distance Vector-Routingalgorithmus.

AS Ant System.

BCO Bee Colony Optimization.

BeePCo Bee Pheromone Coverage.

DOF Degrees of Freedom.

DQN Deep-Q-learning-Network.

FNN Feed-forward Neural network.

GRU Gated Recurrent Units.

HybaCo Hybrid Bee and Ant Pheromone Coverage.

I2C Inter-Integrated Circuit.

IMU Internal Measurement Units.

IR Infra Red.

LCD Liquid Crystal Display.

LSTM Long Short-Term Memory.

MAV Micro Aerial Vehicle.

MaxCo Maximal Potential Coverage.

xiii

MCL Monte Carlo Localisation.

MDP Markov Decision Process.

MIMO Multiple Input Multiple Output.

MRS Multi Robot System.

PI Path Integration.

PID Proportional Integral Derivative.

POI Point of Interest.

PS Pheromone Signalling.

QMP Queen Mandibular Pheromone.

QR Queen Robot.

RL Reinforcement Learning.

RNN Recurrent Neural network.

SISO Single Input Single Output.

SPI Serial Peripheral Interface.

STC Spanning Tree Coverage.

StiCo Stigmergic Coverage.

TOA Time of Arrival.

TOF Time of Flight.

UAV Unmanned Aerial Vehicle.

UWB Ultra Wideband.

WiFi Wireless Fidelity.

WSN Wireless Sensor Nodes.

WSRNs Wireless Sensor Robot Networks.

xiv

Preface

This thesis is primarily my own work. The sources of other materials are identifed.

xv

Abstract

This works addresses the complexity of coordinating in large multi-robot systems (MRS),

by drawing inspiration from simple and effective strategies, observable in social-insect

colonies e.g. ants and bees. These insects have evolved over a long period of time and

show remarkable behaviours that are highly suitable for addressing the complex tasks

that they are facing. In this thesis we introduce two novel social-insect based approaches,

providing simple and effective coordination in the field of multi-robot coverage and

explore their performances and properties in extensive case studies. To address their

limitations in real-world situations, we introduce and evaluate an end-to-end system to

allow their deployment on light weight robotic systems.

xvii

Acknowledgements

The completing of the work presented in this thesis, represents one of the biggest and

longest challenges of my life to date. I would not been able to reach this point without

support of the people who have been involved over the last four years.

A large share of this gratitude must go to my supervisory team Prof. Karl Tuyls,

Dr. Elizabeth Sklar and Dr. Daniel Hennes. To Karl, I owe beside the thanks for great

guidance, insight and research ideas, also the opportunity and trust to peruse my PhD

in the first place and for being a great mentor in and out-side the research. To Elizabeth

and Daniel I owe thanks for their ability to provide me with new concepts and research

angles to progress my research in the right direction. I would also like thank my advisers

Dr. Clare Dixon, Prof. Frans Coenen and Prof. Simon Parson to provide a different

perspective to my research and confirming the research’s trajectory.

Also a big thanks to my friends and team-mates of the smARTLab robocup team:

Richard William, Daniel Claes and Joscha Fossel, for having the funniest, but more

exhausting programming session I will hopefully ever have and taking the win in Brazil,

Portugal and Germany. Also to my other fellow PhD students Eric Schneider, Jeffery

Rafael, Gabrielle Dos Santos, Matoula Kotsialou, Elisa Cucco, Richard Klima, Paul

Gainer, Maryam Kamali and Dr. Daan Bloembergen for going through the same process

and providing the needed distracting in coffee breaks, after hour socialising and the

annual Sunday cinema breaks.

Outside the University, I would like to thank my childhood friends: Annika, Julia,

Markus, Sascha and Teresa, who are still keeping contact with me, even when the thesis

writing made me temporally unavailable.

Finally and most importantly to my family. Where my father, Gerd sparked my

interest in technology early on and still supports and implements every unconventional

idea I have, with me. To my mother Ursula for being the best and supporting me even

if I doubt myself. To my brother Julian, for being a good friend and for being there,

when I need distractions in form of sport or riddles. And to the whole family for being

my support system.

xix

Chapter 1

Introduction

1.1 Bio Inspired Multi-robot Coordination

In recent years, there has been a rapidly growing interest in using teams of mobile robots

for automatically surveilling environments of different types and complexity. This in-

terest is mainly motivated by the broad spectrum of potential civilian, industrial and

military applications of multi-robot surveillance systems. Examples of such applica-

tions are the protection of safety-critical technical infrastructure, the safeguarding of

country borders, and the monitoring of high-risk regions and danger zones which can-

not be entered by humans in the case of a nuclear incident, a bio-hazard or a military

conflict. Triggered by this interest, today automated surveillance is a well-established

topic in multi-robot research, which is considered to be of particular practical relevance

[42, 64, 67]. An important topic in the multi-robot field is the coordination of large

groups robots/swarms. This could entail futuristic scenarios like the interconnection of

simple micro robots to form any desired structure or formation to solve a certain task.

Figure 1.1 illustrates a robot-platform based on this idea. Also use-cases for space-debris

cleaning [65] or the exploration of planets and moons are possible applications in the

future. Advantages of employing greater groups are the parallelisation of tasks and

Figure 1.1: Reconfigurable ATRON modules

the systems robustness, since it suffers less from a single failure, compared to systems

relying on one or few individuals. Furthermore, they are able to overcome the indi-

vidual limitations, e.g. payload, computational and sensing limitations, by combining

the capabilities and strengths of the whole group. But with those advantages comes

1

Chapter 1. Introduction 2

also the problem and complexity of controlling all units. This can either be done in a

centralised or decentralised fashion. In the former approach, a centralised computing

unit, able to observe the states of all robots, plans and communicates the best action to

each individual. These actions are than received and executed by each agent to reach

a global goal. In order to provide a fully observable state, these systems apply sensors

like top-down or motion capture cameras, which can observe the states of all robots at

once. Alternatively, this can also be accomplished by observing the state individually

and communicating it to the central control unit. The major issue with these kind of

approaches is that the global state is sometimes not observable by a single unit, because

there is no sensor or device, for this specific environment capable of capturing this kind

information, or a stable communication link between all units is not possible, because

of the sheer size of the swarm. Additionally, a critical problem of this approach is that

all units rely on the input of the centralised controller, which is therefore the systems

single point of failure. Meaning, the system is not able to perform if the communication

or the main controller malfunction. This makes decentralised systems more interesting,

instead of having one or a couple of sophisticated agents responsible for the planning,

these kind of systems build on the principle that the planning is done individually by

each agent. In order to reduce complexity, the decision process of most systems relies on

local observations and communication of an agent, instead of employing a global state of

all agents combined. In general, decentralised approaches aim, in terms of hardware and

algorithms, for a simple and robust implementation, since complicated sensors and high

computational calculations require expensive robot platforms. Many approaches in this

field taking inspiration form natural swarms, as they tend to follow simple behaviour

rules on an individual level, to accomplish complex cooperative tasks. One popular ex-

ample was proposed by Rubenstein et. al. 2014 [86], where a complex group formation

was achieved, on a low cost robot swarm, by employing a simple rule decision process.

The robots in this approach apply basic edge following and infra-red line of signed com-

munication to estimate positions and shape the swarm in the desired formation (see

Figure 1.2).

Many researchers, draw inspiration from observations of social insects such as ants

and bees. These insects have evolved over a long period of time and display remark-

able behaviours that are highly suitable for addressing the complex tasks that they are

facing. Swarm optimization algorithms, like ant colony optimization (ACO) (Dorigo et

al., 2006b [29]), rely on pheromone trails to mediate (indirect) communication between

agents. This is based on the principle, that ants leave pheromone trails behind when

they are looking for food and other ants are attracted by those trails. If an ant finds a

food source, it will transport food between the location and the nest until all the food

source is completely depleted. Since the pheromones decay over time, shorter routes

will converge towards a stronger pheromone trail than longer ones, ants are therefore

attracted by efficient solutions. This is illustrated in Figure 1.3a. Considering the ants

have no specific recipient and they convey information indirectly via the placement of

Chapter 1. Introduction 3

differential drive, where each wheel is powered by an electric
gear motor. While this conventional wheeled locomotion is
quite effective, it is relatively expensive. To keep the cost
down, Kilobot uses two sealed coin shaped vibration motors
for locomotion. When one of these motors is activated,
the centripetal forces generated by the vibrating motor are
converted to a forward force on the Kilobot located at the
motor’s mounting location. The principle of converting the
motor vibration to a forward force can be explained using
the slip-stick principle, the details of which can be found in
[17]. The slip-stick locomotion of a Kilobot was confirmed
using high-speed video of the robot’s movement. Due to the
off-center mounting of the two vibration motors, as shown
in Fig. 1, the vibration of one motor alone will cause a
rotation of the Kilobot about its vertical axis, while the
vibration of the other motor will cause an opposite rotation.
By controlling the magnitude of vibration for the two motors
independently in a differential drive manner, the robot can
move in a continuous range from clockwise rotation, to
straight forward, to counterclockwise rotation. This enables
the Kilobot to move approximately 1 cm/sec and rotate
approximately 45 degrees/sec.

One major drawback to using this low-cost slip-stick based
locomotion, as opposed to wheels with encoders, is that
there is no real form of odometry. This makes moving
precisely over long distances or for a long time difficult.
One way to address this difficulty, which harnesses the
power of a collective, is to use the measured distances
between neighbors as feedback to correct errors in the robot’s
movement. As is shown in section II-F, this allows the robot
to achieve fairly accurate motion control when aided by other
robots. Another limitation to this locomotion is that it can
not move over rougher surfaces, requiring a smooth surface
such as a dry erase surface to work. While this does limit
the environments that Kilobot can operate in, it dramatically
reduces its cost, and still allows for the demonstration of
many interesting collective behaviors.

B. Communication and Sensing

A vast majority of collective robot algorithms use robot-
to-robot communication and sensing, such as distance and
bearing to neighbors, as the main information to drive the
behaviors of individual robots. Therefore, it is critical that
Kilobot also be able to communicate with its neighbors
and sense some information about its physical relation to
its neighbors. In order to keep the robot cost down, the
sensing of neighbors only includes distance sensing, not
bearing sensing. While bearing sensing is often used with
collective robots, for example [9], distance-only sensing is
still sufficient for interesting collective behaviors, including
SDASH [14].

To communicate with neighboring robots, each Kilobot
has an infrared LED transmitter and infrared photodiode
receiver, which are located in the center of the PCB and
are pointed directly downwards at the table the Kilobot is
standing on as shown in Fig. 1. Both the transmitter and
receiver have an isotropic emission or reception pattern,

Fig. 3. Illustration showing the reflection path of robot communication.

which allow the robot to receive messages equally from all
directions. Additionally, both the receiver and transmitter are
wide-angle, with an angle of half power of 60� from the
robot’s downward pointing vertical axis. When the transmit-
ter is active, any nearby robot can receive the light emitted
by the transmitting robot after it is reflected off the table,
as shown in Fig. 3. Messages are transmitted by pulsing
the transmitter according to standard line coding technique.
Using this simple communication method, a Kilobot can
communicate at rates up to 30 kb/s with robots up to 10cm
(about 6 robot radii) away.

With all robots using the same infrared channel for
communication, there is the possibility that two or more
robots may try to transmit at the same time. To mitigate
this problem a standard carrier sense multiple access with
collision avoidance (CSMA/CA) method is used. Even with
CSMA/CA, environments with many nearby robots will
experience a reduction of the channel bandwidth due to
collisions. In an experiment with 25 robots, configured as
shown in Fig. 2, the channel could support on average 240
five-byte packets/second, a 32% channel usage.

During any communication between robots, the receiving
robot also measures the intensity of the incoming infrared
light. This incoming light intensity is a monotonically de-
creasing function of the distance between the transmitter
and the receiver; therefore the distance to the transmitter
can be calculated by the receiver. In practice, the incoming
intensity of light is also affected by noise and manufacturing
variances, which leads to sensing accuracy of ±2 mm, and
precision under 1 mm.

There is also a visible light sensor on each robot, which
can sense the level of ambient light shining on the robot.
While this sensor is not used in SDASH, it may be useful for
other collective applications such as phototaxis or collective
transport.

C. Controller

The controller for the robot serves two functions. Firstly, it
interfaces with all the low-level electronics such as motors,
communication, power circuitry, and the RGB LED (used
for displaying information to the operator, seen in Fig. 1).
Secondly, it runs a user-defined robot behavior program.
The controller used is an Atmega328 microprocessor, which

(a) (b)

Figure 1.2: Swarm formations with 1000 kilobots. A: Illustrates the kilo-robot plat-
form. It employs three rigid legs in combination with vibration motors for movement
and uses infra-red emitter and receive for direct communication. B: Illustrates the pro-
gression of the swarm formation. The robots start in a random group formation and

converge slowly towards the desired shape.

pheromone, this type of communication is defined as indirect communication. Beside

the pheromone attraction, have ants a minor probability of choosing random paths, this

allows them to discover new solutions and they are able to reroute blocked paths, making

their strategy overall extremely robust.

Such insect-inspired multi-agent research has also opened the possibility of applying

some of these techniques to robotic systems, i.e., swarm robotics (Dorigo and Roosevelt,

2004 [33], Sahin, 2005 [88]). Swarm robotic systems show potential for different kind

of applications, e.g. search and rescue, surveillance and patrolling. Other application

areas include exploration and identification of hazardous environments (e.g., nuclear

plants and fire detection), wireless sensor and robot networks, space exploration, etc.

Though easy to simulate, artificial pheromones are hard to bring into real life robotic

applications as pheromones need to be deployed and sensed by robots while they decay

over time. Recently, non-pheromone-based algorithms were developed as well (Lemmens,

2011 [69], Dorigo et. al., 2006 [50]). Such algorithms are inspired by the foraging and

nest-site selection behaviour of (mainly) bees. Generally speaking, bees explore the

environment in search for high-quality food sources and once returned to the hive, they

do a wiggle dance to communicate and describe the location of the source. By using this

dance, bees recruit other colony members for a specific food source (Figure 1.3b). The

more bees adopt a certain transportation path, the more bees will eventually perform

the same dance. Since few dances will not attract enough bees, the best transportation

path will eventually prevail. These kind of approaches are attractive in the field of

multi-robot coordination since they build on a simple rule-based movement behaviour

in combination with direct or indirect communication principles.

Chapter 1. Introduction 4

Food

Nest
(a) Ants follow pheromone trails between nest
and food source. Since shorter routes can be
traversed quicker, their pheromone density is
higher compared to longer routes. This at-
tracts consequently more ants and the swarm

converges towards an optimal solution.

(b) Bees employ a wiggle-dance to convey in-
formation about discovered food sources. The
angle relative to the sun and the duration of
the wiggle inform cooperating bees about the
direction and distance to a specific food source.

Figure 1.3: Behaviour of social insects.

1.2 Research Questions and Contributions

Bio-inspired coordination strategies are interesting for multi-robot coordination, since

they are mostly based on simple rule-base behaviours, which makes them robust and

scalable. During this thesis we are focusing on ant and bee-inspired coordination,

which emergences mostly from their communication principles, e.g. pheromone trails

or pheromone propagation. Ant communication is refereed to as indirect communica-

tion, since they are conveying information by placing pheromones into the environment.

The messages have therefore no direct receiver and are only influencing other agent based

on their pheromone dosage and placement location. Bee apply both direct and indirect

messaging, e.g. they pass information via pheromone propagation through the hive,

where the pheromone is passed actively from one bee to another. During this thesis we

investigate and propose techniques to apply these principles to the field of multi-robot

coverage and examine their differences, strengths and weaknesses in simulation.

Modern robot hardware and sensors are still limiting the application of bio-inspired

coordination/coverage strategies in a real-world setting, since their communication strate-

gies e.g. placement of pheromone trails, are still difficult to implement. Additionally are

these strategies designed to emerge their potential through the size of the robot team.

Meaning, an individual is limited in its capabilities and is mostly not able to accomplish

the task on its own, only through simple cooperation within the group, emerges the

Chapter 1. Introduction 5

potential of the algorithm. In order to provide the size required and to compensate sin-

gle failures, most applications aim to reduce the cost and consequential the computing

power of each robot. These limitation complicate simple, but computational expensive

robotic tasks, like e.g. collision avoidance and sensing/localising of other robots. The

former functionality is particularity necessary for flying vehicles since crashes between

these robots can damage or break these robots. As part of this thesis, we tackle the

problems of providing these capabilities with low-cost sensors to Micro Aerial Vehicle

(MAV) platforms in real-world applications. In order to handle the low-computational

power, we investigate and provide a machine learning based system, since the execution

of a learned algorithm can be much quicker and reactive, than modern deterministic

and random sampling based approaches. Machine learning, particular deep-learning has

shown in the past years its capability of learning complex movement strategies and its

accuracy in prediction tasks, but it is mostly used in clean and simulated environments.

We investigate in our research how we can utilise these properties to provide a coordi-

nation framework, which allows the application of bio-inspired coordination principles

on ultra-light weight robots platforms, specifically pocket-drones.

The research questions, that the work in this thesis aims to answer, are the following:

Research Question RQ1: To what extent can we devise appropriate algorithms

for stigmergy-based/bio-inspired multi-robot exploration/coverage, in simulation and

ground-based robots?

Research Question RQ2: What are the advantages of direct and indirect communi-

cation and to what extent can they be combined?

Research Question RQ3: Given algorithms derived from RQ1 and RQ2, to what

extent does the environment shape and size affect their performance?

Research Question RQ4: How can modern sensors and technology be applied to

provide a bio-inspired coordination on pocket drones?

Research Question RQ5: To what extent can deep learning be beneficial for the

performance of the hardware discovered in RQ4?

Chapter 1. Introduction 6

In context of the research questions the following is a summary of the key contributions

of the work presented in this thesis:

1. Chapter 4 presents a novel bee pheromone inspired coverage approach called

BeePCo (Bee Pheromone Coverage). It is designed for achieving maximal sen-

sor coverage, applicable in the context of mobile wireless sensor nodes, aiming to

answer RQ1.

2. Based on the contribution of Chapter 4, we developed a new coverage approach

called HybaCo (Hybrid Bee and Ant Coverage). It combines direct and indirect

communication to provide an improved continues coverage behaviour. The ap-

proach is described in Chapter 5 and aims to answer RQ1 and RQ2.

3. Aiming to answer RQ3, Chapter 6 is conduction a case study to determine to

what extent the environment shape and size affects the performance of coverage

approaches, more specifically BeePCo and HybaCo.

4. The final contribution consolidates multiple machine learning techniques and mod-

ern communication technology to provide a local sensing framework for multi-robot

coordination of aerial pocket drones. These technologies include Ultra-wideband

(UWB) communication and deep neutral networks. The developed system is shown

in Chapter 7 and aims to answer RQ4 and RQ5.

1.3 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 introduces preliminaries

including background in the behaviour of social insects, neural networks, reinforcement

learning, monte-carlo localisation, ultra wideband distance estimation and quadrotor

control. Chapter 3 presents related work in the field bio-inspired multi-robot coverage

with an focus on the techniques this work is relying on.

Chapter 4 describes the proposed bee-pheromone based multi-robot coverage ap-

proach BeePCo (Bee Pheromone Coverage) and examines its strengths and weaknesses

in experimental evaluations. BeePCo applies the concept of pheromone propagation in

bee-hives, to distribute information and achieve maximal sensor coverage.

Chapter 5 introduces HybaCo (Hybrid Bee and Ant Coverage) a bee- and ant-based

pheromone coverage approach and investigates its strengths and weaknesses in exper-

imental evaluations. HybaCo employs ant-inspired pheromone trails and bee-inspired

information propagation to continuously surveil an environment.

Chapter 6 describes an extensive case-study to determine to what extent the envi-

ronment shape affects the coverage performance of proposed algorithms BeePCo and

HybaCo.

Chapter 1. Introduction 7

Chapter 7 proposes a novel end-to-end system allowing bio-inspired multi-robot coordi-

nation on pocket drones. The developed system combines radio-based distance calcula-

tion with a recurrent neural network to estimate relative position between drones and

employs a simple deep-q network (DQN) to provide low-level navigation and collision

avoidance.

Finally Chapter 8 concludes the thesis with an overall analysis of the research as well

as a discussion of the future work.

Chapter 2

Preliminaries

This chapter introduces the concepts, background and techniques used throughout this

thesis. Section 2.1 starts by illustrating the behaviours of social insects, e.g. bees and

ants and termites, many coordination algorithms are basing on. The knowledge of these

concept is necessary to understand the related work in Chapter 3 and the approaches

introduced in Chapters 4 and 5.

In Chapter 7 we propose a technique for multi-robots coordination for pocket drones

based on local distance sensing. This relies on many computer science techniques and

principles described in the following sections: neural networks (Section 2.2) in combina-

tion with reinforcement learning (Section 2.3), particle filter (Section 2.4), radio wave

distance estimation (Section 2.5) and finally the control of quadrotors (Section 2.6).

2.1 Bio Inspiration

This section provides the required background knowledge of three different biological

inspirations for the techniques proposed in Chapters 4 and 5. Subsection 2.1.1 starts by

introducing stigmergic behaviour of ants, it continues with the foraging behaviours of

honeybees in Subsection 2.1.2 and ends with the pheromone signalling mechanism for

queen bee selection within honeybee colonies in Subsection 2.1.3.

2.1.1 Stigmergic Behaviour of Ants

The term “stigmergy” was introduced by French biologist Pierre-Paul Grass in 1959, he

defined it as: “Stimulation of workers by the performance they have achieved.” [101]. It

describes a indirect coordination mechanism where agents communicate through the en-

vironment. The agents leave traces in the environment by taking an action this simulates

the performance of the next action. This can either effect the same agent or different

agents. Meaning, subsequent actions influence/build on each other. In the context of

ant, stigmergy works as follows: ants deposit a pheromone trail on the path they take

during travel. Using this trail, they are able to navigate toward their nest or food and

communicate with their peers. More specifically, ants employ an indirect recruitment

9

Chapter 2. Preliminaries 10

strategy by accumulating pheromone trails. When a trail gets strong enough, other ants

are attracted to it and will follow this trail toward a food destination. The more ants

follow a trail, the more pheromone is accumulated and in turn the trail becomes more

attractive for being followed. This is known as the autocatalytic process. Since long

paths take more time to traverse, it will require more ants to sustain a long path. As a

consequence, short paths will eventually prevail, see Figure 2.1c.

Nest

Food

(a)

Nest

Food

(b)

Nest

Food

(c)

Figure 2.1: A: The first ant finds a food-source, than the ant reaches the Nest, leaving
a pheromone trail. B: Other ants follow the one of four possible paths. C: The ants are

following the shortest path.

2.1.2 Foraging Behaviour of Honeybees

Foraging honeybees display two types of behaviour, i.e., recruitment and navigation.

In order to recruit other colony members for food sources, honeybees inform their nest

mates of the distance and direction of these food sources by means of a waggling dance

performed on the vertical combs in the hive. This dance (i.e., the bee language) con-

sists of a series of alternating left-hand and right-hand loops, interspersed by a segment

in which the bee waggles her abdomen from side to side. The duration of the waggle

phase is a measure of the distance to the food. The angle between the sun and the

axis of a bees waggle segment on the vertical comb, represents the azimuthal angle be-

tween the sun and a target location, i.e., the direction in which a recruit should fly (see

Figure 2.2a). Other members of the colony can adopt the “advertisement” for a food

source. The decision mechanism for adopting an “advertised” food-source location by

a potential recruit is not completely understood. It is considered that the recruitment

amongst bees is a function of the quality of the food source. Different species of social

Chapter 2. Preliminaries 11

α

1s
 =

 1
 k

m

(a)
(b)

Figure 2.2: A: Shows the bee-dance. The angle relative to the sun indicates the
direction and the duration of the wiggle informs of the distance to the food source. B:

Shows the path integration to estimate the shortest path back to the hive.

insects, such as honeybees and desert ants, make use of non-pheromone-based naviga-

tion. Non-pheromone-based navigation mainly consists of Path Integration (PI), which

is the continuous update of a vector by integrating all angles steered, and all distances

covered [24]. A PI vector represents the insects knowledge of direction and distance to-

wards its destination. To construct a PI vector, the insect does not use a mathematical

vector summation, but employs a computationally simple approximation [24]. Using this

approximation, the insect is able to return to its destination directly. More precisely,

when the path is unobstructed, the insect solves the problem optimally. However, when

the path is obstructed, the insect has to fall back on other strategies such as exploration

or landmark navigation [23, 25] to solve the problem. Obviously, bees are able to fly, i.e.,

when they encounter an obstacle, they can mostly choose to fly over it. However, even

if the path is unobstructed, bees tend to navigate over the entire path using landmarks.

The landmarks divide the entire path into segments and each landmark has a PI vector

associated with it. This behaviour decreases navigation errors and ensures robustness.

2.1.3 Pheromone Signalling Behaviour of Honeybees

The queen bee selection mechanism in honeybee colonies is used to orchestrate the

colony by assigning responsibilities to each individual. [85] explains the process of larvae

differentiation in beehives as an example of such orchestration. Bees have developed a

special hormonal system to ensure every beehive has a queen, which maintains the

stability of the colony and orchestrates the behaviour of all other bees. Throughout its

life, a queen bee stimulates a pheromone called Queen Mandibular Pheromone (QMP),

Chapter 2. Preliminaries 12

which makes the worker bees aware of its presence as queen. This hormonal mechanism

works as follows: the worker bees lick the queen bee and pass the pheromone on to

the others. This pheromone is stimulation worker activities e.g. cleaning, building and

foraging, but it also suppresses the urge to rear new queens. If the queen is old or sick

(low pheromone) or is dead (no pheromones), the workers are alarmed and driven to

rear new queens, they start feeding a few larvae with so called royal jelly containing

royalactin protein [85]. The workers will also start building a so called queen cells

around the larvae, in this specific case these queen cells are called an emergency cells.

Royalactin protein induces the differentiation of honeybee larvae into a new queen. The

queen which hatches first will kill the other queens in their cells, if two queens hatch

at the same time they will fight to the death. This means as long as worker bees keep

receiving the pheromone, they will be aware that there is a queen bee to orchestrate

the colony and are not likely take action towards rearing a new queens. The algorithm

BeePCo proposed in this Thesis is based on this principle, for more detail see Chapter 4.

2.2 Neural Networks

Artificial Neural networks (ANN) are a common machine learning concept with the abil-

ity to learn linear and non-linear relationships between input and output data. They

are used in a varity of research field e.g. vision, speech recognition and playing games.

This Section describes the basic idea of neural networks (Subsection 2.2.1), illustrates

network topologies relevant for this thesis (Subsection 2.2.2), shows how these networks

are trained (Subsection 2.2.3) and finally goes in more detail about special network

cells which enable the network to learn outputs from a sequential input data (Sub-

section 2.2.4). All those techniques are employed in the distance-based multi-robot

coordination on pocket, proposed in Chapter 7.

2.2.1 Basic Concept

ANNs are derived from biological neural networks that constitute human/animal brains.

They are composed of artificial neurons also known as “nodes”. These neurons are con-

nected via weighted edges, where the weight indicates the importance of the connection

between nodes inside the network. Depending on the network type, the connections are

either directed or non-directed (see Subsection 2.2.2). Usually an ANN has three types

of neurons: input-, hidden- and output-neurons. The input neurons/nodes are the nodes

located in the first layer of the network, the output-nodes are in the last layer and the

hidden-nodes are in between those two (Figure 2.3a). The network receives the input-

data as an array of numbers at the input layer, defined as x(n), with n as the size of the

array. Each input is multiplied by its weight. The weighted inputs are than summed up

and a bias is added, to avoid a sum of zero. Finally, this sum is than transformed, by

a mostly not linear activation function, in a so called activation value. The activation

is than propagated in this fashion through the network until it reaches the last layer to

Chapter 2. Preliminaries 13

represent the estimated output. This process is illustrated in Figure 2.3b. There are

In
pu

t v
ec

to
r

O
ut

pu
t

Input
Layer

Hidden
Layer

Output
Layer

(a)

Activation-
function

Neuron
W
1

W
2

W N

Output

X1X1

X2

Xn

∑
i=1

n

xiw i+b

(b)

Figure 2.3: A: Shows the general structure, the input-layer and the output-layer of
an ANN. B: illustrates in more detail the operations inside a singular neuron.

different kinds of activation functions, depending on the networks purpose, they can e.g

“squash” the input to a output between −1 and 1 or transform the value to a binary

output of zero or one. Most commonly used activation functions are threshold, linear

and tan hyperbolic sigmoidal functions(nonlinear), shown in Figure 2.4. The goal of the

learning is, to adapt the weights in a way that the input data corresponds to a desired

output, this is described in Subsection 2.2.3.

−6 −4 −2 0 2 4 6
Input

−6

−4

−2

0

2

4

6

O
u
tp
u
t

(a) Linear

−6 −4 −2 0 2 4 6
Input

−1.0

−0.5

0.0

0.5

1.0

O
u
tp
u
t

(b) Threshold

−6 −4 −2 0 2 4 6
Input

−1.0

−0.5

0.0

0.5

1.0

O
u
tp
u
t

(c) tan hyperbolic sigmoidal

Figure 2.4: Example of activation functions.

2.2.2 Topologies

There are many different possible network configuration, this section is focusing on the

topologies important in the context of this thesis.

Feed-Forward Network

A feed-forward neural network (FNN) is a directed graph where the signal can only

travel from the input layer to the output layer without any recurrent links. The data is

flowing throw the network with the steps described in Section 2.2.1. Figure 2.5 shows a

simple example of a FNN network.

Chapter 2. Preliminaries 14

In
pu

t v
ec

to
r

O
ut

pu
t

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.5: Feed-Forward Neural Network

Recurrent Neural Network

A recurrent neural network (RNN) is similar to a FNN, but besides the normal forward

links it can also have links where the output is connected the input of the same node

or nodes from previous layers. These recurrent connections allow the network to hold

information across inputs. These connections can be thought of as similar to memory

allowing the network to remember the previous activation value. This can be useful if

the network has to handle sequential data e.g. in text auto completion, guessing the next

word after a sequence of input words. It is common in RNNs to use special memory cells

which have a specific mechanisms to protect their internal memory from losing essential

previous inputs, allowing them to handle longer sequences. The most common cells

are Long Short-Term Memory (LSTM) [55] cells and Gated Recurrent Units (GRU). In

course of this thesis we employ a recurrent network with LSTM-cells, the basic principle

of these cells is described in Section 2.2.4.

In
pu

t v
ec

to
r

O
ut

pu
t

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.6: Recurrent Neural Network

2.2.3 Training

There are many types of learning for neural network, this Section is focusing on su-

pervised learning. In supervised the training set contains input-data with their desired

output. The aim of this training is to adjust the weights of the network so that the error

between the networks and the actual output is minimised. The error of the network can

Chapter 2. Preliminaries 15

be seen as a optimisation function parametrised by the weights of the network. In order

minimise this function, gradient descent optimisation algorithms are usually applied.

These backpropagate the error back through the network to calculate the derivative of

the function, with respect to the weights and biases, by applying the chain rule [5, 34].

This results in direction of the slope pointing away from the minimum (local). The

weights are updated in the opposite direction of the slope to minimise the error. The

step size is determined by a learning rate. For more detail about backpropagation

see [92].

2.2.4 Long Short-Term Memory

LSTM-cells are capable of storing information, allowing the network to remember infor-

mation many steps back. The cells are able to make decisions about when to store and

read these informations, this is accomplished by opening or closing gates inside the cell.

The gates are analog with the ability to parity “open” and “close”. Different to normal

memory, LSTM-cell data is differentiable, and therefore suitable for backpropagation.

The gates mentioned, react on the signal received and open/close depending on the

passed information. This depends on weights which will adjusted during the learning

process. Figure 2.7 illustrates the structure of a LSTM-cell. The cell contains three

gates for controlling the information flow. These are input-, forget- and output-gate.

Mathematically these gates returns a numerical value between zero and one, which is

than multiplied with information to partially or completely allow or deny the flow of

information. The three gates have the following purpose:

• Input-gate: Determines to which extent a new value flows into memory.

• Forget-gate: Controls the importance of the current value in memory.

• Output-gate: Determines the flow of the resulting activation value.

For more information about LSTM see [55].

C

Input gateInput gate

Output gate

Forget gate

In

Out

Figure 2.7: LSTM-cell

Chapter 2. Preliminaries 16

2.3 Reinforcements Learning

Reinforcement Learning (RL) is an area in machine learning focusing of maximising

an agent sum of rewards, based on its actions in an given environment. The envi-

ronment is usually formulated as a Markov Decision Process (MDP), but different to

other techniques reinforcement learning doesn’t require knowledge about the MDP itself.

This makes it suitable for bigger and complex environments, where designing of a MDP

before-hand is not feasible. This Section will give an general description of reinforcement

learning and the Markov Decision Process in Subsection 2.3.1 and will go in more detail

about a reinforcement learning related technique called Deep Reinforcement Learning

in Subsection 2.3.2. This builds a foundation for the proposed technique introduced in

Chapter 7.

2.3.1 Overview

Markov Decision Process (MDP) is the basic model Reinforcement Learning (RL) is

building on, it is defined as follows:

• S: Set of possible states.

• A or A(s): Set of actions or set of actions available in state s

• T(s,a, s′) = Pr(s
′|s,a): Probability to transition to state s′ under the condition

of being in state s and taken action a.

• R(s), R(s,a) or R(s,a, s′): The reward a agent receives for entering a state s, the

reward a agent receives for being in a state s and taking action a or the reward an

agent receives for selection action a in state s and transition to state s′.

A MDPs actions can either be stochastic, where the agent has a certain probability to

transition to a certain state ′s by execution action a in s, this means executing an action

can have multiple outcomes and all the transition probabilities of a state action pair

have to add up to 1.0. The alternative are deterministic actions, where the transition

probability is 1.0 and the agent will always transition to the same state s′ by execution

the action a in state s. The actions available can depend on state and restricts them

to a subset of A. Rewards can be immediate, but also delayed. Delayed means that

the agent only receives a reward after executed a sequence of actions and reached a

certain state. A good example is a path finding problem where the agent only gets a

reward after it arrived at the goal. The aim of reinforcement learning is to learn a policy

π(s) which returns the optimal action a given the current state s. In order to obtain

this policy, a reinforcement agent is continuously interacting with its environment. It’s

executing actions and observing the resulting rewards. In order to act near optimally, the

agent must reason about the long term consequences of its actions (i.e., maximize future

income), although the immediate reward associated with this might be negative. The

advantage of reinforcement learning approaches is that they are able to learn a policy

Chapter 2. Preliminaries 17

 S0 S1

 S2

 a0

0.5

 a1

 0.3
0.7

 a0
 1.0

 a1

1.0

0.5

r= +1

r= +3r= -3

(a)

Agent

π(s)

Environment
[Transition]

ActionState
Reward

(b)

Figure 2.8

without knowing the reward and transition function. These approaches can generally be

divided in two categories: 1) Model-based approaches, which build models for reward-

and transition-function based on the gathered observation and applying value/policy

iteration to solve the problem. 2) Model-free approaches which derive the policy directly

from the gathered data without building a model before hand. One of the most popular

model-free approaches is Q-learning, it’s also the basic idea behind Deep Reinforcement

Learning, which is employed in this work and described in the following Subsection 2.3.2.

2.3.2 Deep Reinforcement Learning

As mentioned before, Q-learning [100] is a model-free approach with the aim to learn

a optimal action-selection policy by interacting with the environment. Q-learning in

particularly provides the expected utility-value for every state-action pair. After the

learning is finished the optimal policy is simply the selection of the action with the

highest utility value in a given state. The function returning the utility is call the Q-

function. In the general the environment is parametrised by ε. During training, the agent

will select an action at, at time-step t, transiting it from state st to st+1 and receiving

the reward rt. This experience et = (st, at, rt, st+1) is stored in the replay buffer of

the agent. This data-storage is parametrised as D and mostly limited to a fixed size

of N . This means the oldest experience is dropped when the storage-size exceeds N .

The selection of the action can either be random or based on the current Q-function.

A common selection-strategy is ε-greedy, where the agent selects a random action with

the probability of ε and a value-function based action with the inverse chance of 1− ε.
Typically ε is initialised with a high value and reduced over time. This allows for a

better exploration of the action space in the beginning. In the update-phase the agent

will than draw a random mini batch of experiences from the replay-buffer in order to

update the Q-function. In Q-Learning, Q∗(s, a) is defined as the optimal value function

for calculating the expected reward, for a given state-action pair, it’s defined by the

Chapter 2. Preliminaries 18

recursive Bellman equation:

Q∗(s, a) = Es′∼ε[r + γmax
a′

Q∗(s′, a′)|s, a] (2.1)

Meaning, the Q-value of the state-action pair s and a, is the resulting reward r plus

the maximal future reward, where all the consecutive actions are chosen optimally. The

future reward is reduced by the factor γ ∈ (0, 1]. One way to solve the problem, is to use

the Bellman equation as in iterative update Qi+1(s, a) = E[r + γmaxa′ Q
∗
i (s
′, a′)|s, a].

Works proposing this technique converge to a optimal action-value function, Qi → Q∗ for

i → ∞ [100]. But this approach doesn’t scale well. Instead [40] proposes to employ an

approximator in a form of a neural network parametrised θ, to provide a value function Q

to substitute the optimal Q-value-function so that: Q(s, a; θ) ≈ Q∗(s, a). This network

is also referred as Deep-Q-learning Network (DQN). It’s trained in each iteration i by

minimising a loss function Li(θi),

Li(θi) = Es,a∼p(·)
[
(yi −Q(s, a; θi))

2
]

(2.2)

where yi is derived from the Bellman equation as yi = Es′∼ε[r+γmaxa′ Q(s′, a′, θi−1)|s, a]

and p(s, a) is a provability distribution over states s and actions a. Differentiating the

loss function with respect to the weights θ of the network, results in the following gradient

used to update the weights:

∇θiLi(θi) = Es,a∼p(·);s′∼ε
[(
r + γmax

a′
Q(s′, a′; θi−1)−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
(2.3)

There are different methods to define a condition which determines the end of training.

The simplest one is to set a fixed number of episodes, where an episode is a limited

by a number of time-steps. In this case the agent interacts with the environment until

the time-step limit N is passed or the agent reaches a terminal state, this is repeated

for M episodes. The disadvantage of this approach is that this condition doesn’t verify

how good the policy is performing. Therefore a better method is validate the current

policy every x iterations on a number of important scenarios. If the policy performs

as expected or the accumulated reward doesn’t increase any more, the training can be

stopped. Depending on the use-case using the reward can be quite noisy. An other

method is to check the Q-value of a set of states. The states are randomly chosen in the

beginning and are frequently checked for the expected maximal Q-value returned from

the current network. If the accumulated Q-value is not increasing over a longer period

of time, the training can be stopped, since this is most likely an indication that the

Q-function is close to optimum. Algorithm 1 illustrates the described learning process

inside a simulation with M episodes and T time-steps per episode. For further details

about Deep Q-learning Reinforcement, see [40, 74].

Chapter 2. Preliminaries 19

Algorithm 1: Deep Reinforcement Learning

1: Initialise the replay buffer D with size N
2: Initialise network with random weights θ
3: for episode = 1, M do
4: observe state s1
5: for t = 1, T do
6: chose random value for z
7: if z < ε then
8: select random action at
9: else

10: at = maxaQ(st, a; θ)
11: end if
12: Execute action at and observe rt and the next state st+1

13: Store experience et = (st, at, rt, st+1) in D
14: st = st+1

15: Sample mini-batch of experiences (sj , aj , rj , sj+1)

16: Set yj =

{
rj , for terminal sj+1

rj + γmaxa′ Q(sj+1, a
′; θ), for non-terminal sj+1

17: Perform a gradient descent step on (yj −Q(sj , aj ; θ))
2 according to

equation 2.3
18: end for
19: end for

2.4 Monte Carlo Localisation

Monte Carlo Localisation (MCL) is a particle filters also known as Sequential Monte

Carlo (SMC) methods, commonly used in robotics for localisation in known maps ([6, 43,

72]). A slightly modified version of this approach is applied during this thesis described

in Chapter 7. Particle filters are designed to provide a conditional probability of states

based on noisy observations. They present a distribution by a set of particles drawn

from this distribution instead of presenting the distribution in parametric form. This

form of representation is able to represent a much wider space of distributions, than for

example Gaussians. Each particle x
[m]
t , in a set of size M , represents a possible state

at time t. At each time step particles are updated by the control ut (e.g. velocity) and

afterwards weighted by its probability w
[m]
t = p(zt|x[m]

t) based on the observation zt.

The weight w
[m]
t represent the relevance of its corresponding particle. Subsequently the

filter draws M particles from the current set, and the probability of drawing a specific

particle is defined by its normalised weight. This increases the probability to converge

towards particles representing the actual state, each particle x
[m]
t has the probability of

its normalised weight
w

[m]
t∑M

i=1 w
[i]
t

to be drawn. This means, higher weighed samples are

more likely been drawn and the set is converging step by step towards particles which are

more likely to represent the actual state. Algorithm 2 shows the mentioned process of the

Monte Carlo Localisation (MCL). Figure 2.9 shows a simple MCL application in action.

The red arrows represent the particles and the yellow circles show the actual path of the

Chapter 2. Preliminaries 20

Algorithm 2: Monte-Carlo Localisation

1: MCL(Xt−1, ut, zt, m)
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: x

[m]
t = sample_motion_model(ut, x

[m]
t−1)

5: w
[m]
t = measurement_model(zt, x

[m]
t−1, m)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: end for
8: for i = 1 to M do
9: draw i with probability w

[i]
t

10: add x
[i]
t to Xt

11: end for
12: return Xt

robot in the real world. The robot in this Scenario knows the map and measures the

environment with a 360 degree laser-scanner. In the beginning the particles are initialised

randomly in the whole room (Figure 2.9a), but the more the robot moves and sensor-

data is gathered certain particles are getting more and more probable (Figure 2.9b) until

the cloud is converging to the actual position (Figure 2.9c). For further detail see [102].

0 1 2 3 4 5
0

1

2

3

4

5

(a)

0 1 2 3 4 5
0

1

2

3

4

5

(b)

0 1 2 3 4 5
0

1

2

3

4

5

(c)

Figure 2.9: Monte Carlo Localisation: (A) shows the initialisation of the particles, (B)
illustrates the particle states after the first moves and sensor updates and (C) presents

the converging towards the actual robot position.

Chapter 2. Preliminaries 21

2.5 UWB Distance Estimation

This section gives an general overview over radio based distance calculation, more specif-

ically for Ultra Wideband (UWB). Distance calculation in this context means to esti-

mate the relative distance between two or more devices, it’s mostly used for localisation.

Multiple devices are placed at fixed positions in a environment, a mobile device is than

tracked by estimating the distance to the fixed devices and applying simple triangulation.

Radio waves are electro magnetic waves with a frequency between 3 kHz and 300 GHz.

These waves are commonly used in wireless communication techniques e.g. WiFi (Wire-

less Fidelity) or bluetooth. Using wireless communication for distance calculation has

different reasons: they are widely spread, low in cost, light weight and have the ability

to penetrate walls. There have been a number of different ranging method proposed,

one of the most well know methods is based on the fact that signal strength decreases

over distance; this technique is called RSS (Received Signal Strength). RSS a simple

and affordable technique, but it suffers from high inaccuracy especially indoors [12].

More accurate methods are time based and are mostly referred to as TOF (Time of

Flight) or TOA (Time of Arrival). The basic idea of these methods is the employment

of communication to calculate the distance between the two devices. The devices are

sending messages back and forth, the distance is than approximated by multiplying the

duration of the messaging process by the speed of travel (mostly light speed). The

amount of messages necessary can be reduced by synchronising the device clocks, but

this process is rather complicated especially with mobile devices. Common communica-

tion techniques like WiFi or Bluetooth are classified as narrow band radio transmission.

Narrow band means that the frequency spectrum (bandwidth) in a channel of those me-

dia is quite small, common WiFi-standards have a bandwidth of 20-40 mHz. They use

a sinusoidal wave as carrier wave and modulate its frequency to encode information, see

Figure 2.10a. One mayor issue in narrowband systems is problem of multipath propa-

gation where multiple replicas of the wave are reflected in the environment, overlapping

or shifting of the original signal, therefore influencing the TOA-detection and distance

accuracy on the receiver side, since start and beginning of the signal are harder to de-

tect. There are techniques trying compensate these issues [56], but they require highly

computational and complex algorithms. Ultra wideband techniques resolve this problem

natively, instead employing a carrier wave they encode information in very short signal

pulses, spreading the radio energy over a wide frequency band, therefore the name Ul-

tra wideband (UWB). The short bursts of signals, with sharp rises and drops, makes

the signals’ starts and stops inherently easier to measure and the short duration of the

signal reduces the probability of overlap (Figure 2.10b). These properties are the reason

why UWB-solutions are gaining on popularity in TOA-implementations, there are less

sensible to noise and provide a high accuracy.

The TOA-implementations itself are divided into two categories: time synchronised

transmitter and receiver and unsynchronised transmitter and receiver. In the first

scheme the clocks of all devices have to be in sync. The sender will then send a message

Chapter 2. Preliminaries 22

0 1 0 1

Time

A
m

p
li

tu
d

e

(a) Narrowband: Frequency modulation.

0 1 0 1

Time

A
m

p
li

tu
d

e

(b) UWB: Signal pulses.

Figure 2.10: Signal encoding

(ping) at a known time or will embed the transmit time into the message. By knowing

the transmit time TSP and the receive time TRP , the recipient is now able to calculate

the distance by multiplying the difference by c (speed of light):

D = (TRP − TSP) · c (2.4)

The drawback of this implementation is the difficulty of the time synchronisation. It

is therefore mostly used for global position information, where most of the devices are

positioned in known locations and physically wired together to provide the synchroni-

sation. The mobile device is able to calculate the global time by knowing the transmit

intervals of the stationary devices. The unsynchronised implementation avoids the syn-

chronisation issues by sending a messages back and forth between two devices to acquire

their distance information, this is known as two-way ranging. In this case if two devices,

for example D1 and D2, require their current distance, a message (poll-message) is sent

out by D1 at its local time TSP and is received by D2 at its local time TRP . D2 response

with a message at time TSR which is received by D1 at time TRR. Lastly D1 transmits

the recorded times TRR and TSP to D2. By subtracting the processing time of D2 from

the from the total time, D2 is now able to calculate the distance as follows:

D =
(TRR − TSP)− (TSR − TRP)

2
· c (2.5)

To reduce the message count, D2 can now send the calculated distance back to D1.

The whole process is illustrated in Figure 2.11b. Additional methods like A0A (Angle

of Arrival) [4] and TDOA (Time Difference of arrival) [52] are only suitable for global

positioning with fixed devices.

Chapter 2. Preliminaries 23

D1

Global Time
D2

Global Time

TSP

TRP

Ping

T ′SP

T ′RP

Ping

Distance= (TRR − TSP) · c

(a) Time of Arrival (TOA) with synchronised
transmitter and receiver.

D1

Local Time
D2

Local Time

TSP

TRP

Poll

TSR

TRR

Response

Final (TSP , TRP)

Distance-Report (optional)

Distance= (TRR−TSP)−(TSR−TRP)
2 · c

(b) Time of Arrival (TOA) with unsynchronised
transmitter and receiver.

Figure 2.11

2.6 Quadrotor Control

The work proposed in Chapter 7 is new multi robot coordination method based on local-

sensing. This method is executed and tested on pocket drones or quadrotors, which are

specified as Micro Aerial Vehicle (MAV). The following section will give an overview

over dynamics and a typical feedback control system applied on MAVs, these principles

are important for the later coordination of the drones. The material in this section is

based on the technical report by Randal Beard [10].

2.6.1 MAV Coordinate Frames

In order understand dynamics described in Subsection 2.6.2 this section will introduce

common coordinate frames used in the context of MAVs. The inertial frame I is a earth

fixed with a arbitrary origin, most of the time the origin is defined as the start or home

position of the MAV. Its x-axis points north, the y-axis points east and the z-axis points

into the earth. The coordinate system of a MAV is described by the body frame B,

where the origin is located at the centre of mass of the MAV. The x-axis points towards

the front of the MAV, the y-axis points to the right of the MAV and the z axis points

downward from the MAV. The translation between the two is given by a rigid body

transform IBT (Figure 2.12).

Chapter 2. Preliminaries 24

TIB

Iy(E)

Ix(N)

Iz(D)

By Bx

Bz

pitch (θ)

roll (φ)

yaw (ψ)

Figure 2.12: MAV Coordinate Frames.

Some works, particularly in the field of MAV control, introduce an additional frame

to separate translation and rotation. For example, the vehicle frame is defined with its

origin at the MAVs center of gravity and its axes aligned with the corresponding axes

of the inertial frame.

2.6.2 Quadcopter System Model

Small quadrotor or also known as quadcopter are categories as Micro Aerial Vehicle

(MAV), they are usually equipped with four equally spaced motors with fix pitch rotors

to provide the lift. The common body shape is mostly squared with the main control

unit (flight controller) placed in the center of gravity. The fight controller includes

the processor and sensors required for the stable control of a quad rotor, discussed in

Subsection 2.6.3. A Quadrotor’s movement has 6 degrees of freedom, this means it can

move freely along its three principle axis x, y and z. Additional it is also able to rotate

around x, y and z, which are respectively called roll-, pitch- and yaw-axis, their rotation

angle is parametrised as φ, θ and ψ (see Figure 2.12). The upward force Fi each motor

Mi generates is controlled by altering the speed of the motor (Figure 2.13). The sum of

these forces combined, make up to total force the craft is able to generate:

F = F1 + F2 + F3 + F4

Increasing forces for different pairs of motors introduces torque around the center of

mass (Figure 2.14), e.g. torque around the pitch-axis θ is given by:

τθ = l(F3 − F2 − F1 + F4)

Chapter 2. Preliminaries 25

F2

F3

F4

F1

Fgravity

τ2

τ3

τ4

τ1

Figure 2.13: Quadrotor motor torque and upward-downward forces.

With l defined as the distance from the centre of mass to the motor. Similarly the torque

around the roll-axis φ is defined as:

τφ = l(F2 − F1 + F3 − F4)

When a propeller is moving through the air it’s exposed to drag which induces a yawing

torques (τ1, ...τ4) on the quadrotors body in the opposite direction of the propellers

rotation. If all propellers would rotate in the same direction this yawing torque would

cause the body to rotate in the other direction. Thus the motors are configured in a way

to counteract this effect, motors M1 and M3 spin counter-clockwise and M2 and M4

spin clockwise. In this configuration one motor pair is cancelling out the yawing torque

of the other and vice versa. The total yawing torque is defined as:

τψ = τ2 + τ1 − τ3 + τ4

The yawing torque of both pairs is in a equilibrium and the quadcopter will hold its

current heading, when τψ = 0. The copter is in a stable hover if yaw-, pitch- and roll-

torque are equal to zero: τθ = τφ = τψ = 0 and the total force F generated by the motors

is large enough to counteract gravity. The forces and torques can be computed by taking

various electromechanical and aerodynamic properties into account, however this is not

necessary for control. Instead, given that produced lift and drag is proportional to the

angular velocity of the motors, forces and torques can be express as:

Fi = C1ω
2
i (2.6)

τi = C2Fi (2.7)

where ωi is the angular velocity of motor i and C1 and C2 are constants that model the

rotor characteristics, these can be determined experimentally. This gives the complete

Chapter 2. Preliminaries 26

(a) Vertical Climb (b) Pitch and Translate Forward

(c) Roll and Translate Right (d) Yaw Left

Figure 2.14: Quadcopter control: this diagram shows how varying the speeds of each
motor results in a corresponding movement, thick arrows indicate increased speed. Note

the coupled rotational and translations movements on the pitch and roll axes.

torque model as:

τψτθ
τφ

 =

−CM CM −CM CM

−l −l l l

−l l l −l

F1

F2

F3

F4

 (2.8)

Additionally, gravitational force is acting on the quadrotor. The gravitation force in

the vehicle frame is given by:

VFg =

 0

0

mg

where g is the acceleration due to earth gravity in m/s2. In order to apply the gravita-

tional force to the quadcopter model, it has to be transformed to the body frame:

BFg =V FgR =

 −mg sinθmg cosθ sinφ

mg cosθ cosφ

where R is a 3× 3 rotation matrix of the rotation group SO(3), θ and φ are pitch- and

roll-angles from the vehicle frame to the body frame. The forces can be decomposed in

Chapter 2. Preliminaries 27

force elements along each axis (Fx, Fy, Fz) by applying the following transformation:

m

ẍÿ
z̈

 = R

0

0

F

−
 0

0

mg

 (2.9)

In order to determine the angular accelerations, the moments of inertia have to be

known, these represent the resistance to rotational acceleration of the body. They can

be calculated by approximating the quadcopter as a dense spherical of mass m at the

center of drone with a radius r and model the motors as point masses at a distance of l

from the copter’s centre. Under the assumption that the quadrotor is symmetric in all

three axes an inertial matrix can be given by:

J =

jx 0 0

0 jy 0

0 0 jz

The inertia for the solid sphere and point masses is given as:

jx =
2mr2

5
+ 2l2m

jy =
2mr2

5
+ 2l2m

jz =
2mr2

5
+ 4l2m

Given the above the angular acceleration can be approximated by:φ̈θ̈
ψ̈

 =

j
−1
x τφ

j−1y τθ

j−1z τψ

 (2.10)

Decomposing equations into their separate components gives the following dynamic

model:

mẍ = −F(cos(φ)sin(θ)cos(φ) + sin(φ)sin(ψ))

mÿ = −F(sin(φ)sin(θ)cos(φ)− cos(φ)sin(ψ))

mz̈ = −F(cos(θ)cos(ψ)) +mg

ψ̈ =
1

Jx
τ̃ψ

θ̈ =
1

Jy
τ̃θ

φ̈ =
1

Jz
τ̃φ

Chapter 2. Preliminaries 28

This simplified model is sufficient to model the motion of the quadrotor and helps to

understand control applied in this thesis. It shows how the multi-rotor is able to ac-

complish its six Degrees of Freedom (DOF), linear movement in x, z, y and rotational

movement in ψ, θ, φ with only four controllable actuators, motors M1, M2, M3, M4.

Keeping this in mind a quadrotor is under actuated, meaning the six DOFs can’t be

controlled independently. If for example, a quadrotor is flying along the x-axis it has to

be pitched forward to generate the required upward-forward thrust it requires.

2.6.3 Feedback Control

The previous section described the dynamics of a multi-rotor system, this section will

give an basic overview over the feedback loop control typically applied in these kind of

systems. In control theory there are two fundamental types of control loops: open-loop

and closed loop control. Open loop control applies an action to a system without mon-

itoring the output of this system. A simple example would be toaster, the controller

executes the heating-action for a constant time, but it usually doesn’t control the tem-

perature or the color of the toast. A closed-loop control, also known as feedback control,

on the other hand is exactly doing that. It compares the current system output of the

system to a reference value, based on the difference between reference and actual value

it will intensify or reduce the action. A common example is a thermostat in a normal

household, it uses temperature sensor to measure the current state of the system and

applies this information to maintain the room temperature at a desired level. Feedback

control is formalised as follows: The current state y(t) of the system at time t is esti-

mated by the system sensors resulting in the measurement z(t). These measurements

are most of the time subject to noise parametrised by δ(t). Aim of the controller is to

minimise the difference/error e(t) between the measurement z(t) and the desired state

x(t). The controller employs e(t) to calculate a new action u(t) which is passed on to the

actuator. The action value will than, based on the systems dynamics, result in a new

system state y(t). This process can be seen as transfer function between u(t) and y(t)

and is often called plant in control theory literature. The outcome of the plant is not

only affected by the action, most of the time it is also influence by external disturbances

ε(t). In context of MAV control ε(t) is i.e. the wind. The whole process is continuously

repeated, the desired value x(t) is not fixed and can be changed during execution. Fig-

ure 2.15 illustrates the flow of a general feedback controller. There are different variation

of feedback control implementations, they differ mostly in the way they determine the

action u(t). One of the most popular mechanisms is the Proportional Integral Derivative

(PID) controller. Like the name suggest its output is a combination of three terms. The

proportional term is the easiest one and calculates the output proportional to the error

as:

KPe(t)

The constant KP , the proportional gain, amplifies or reduces the direct influence of

the error. A high value leads to a fast response, but can cause in overshooting of the

Chapter 2. Preliminaries 29

x(t) Controllere(t) Plantu(t)

ε(t)

y(t)

Measurement

δ(t)

z(t)

Figure 2.15: Block diagram of a typical feedback control problem

desired value and an oscillating behaviour. Lower gains can have an opposite effect an

slow down the response or lead to almost no reaction, due to its inability to overcome

external disturbances. The integral term (I-term) is a accumulation of pass errors,

meaning if an error persist for a while, this terms will increase over time until it has

overcome the disturbance. It is defined as follows:

KI

∫ t

0
e(τ)dτ

An example scenario in the context of MAVs, would be a case where a drone wants to fly

to the left but due to wind its staying at its position or drifting to the right. In this case

the I-term will grow and raise the command-value until it will overcome the external

influence. KI is the integral gain factor to increase or reduce the effect of the I-term in

the control. Combining only the proportional and integral term can in some use-cases

be sufficient, those type of controllers are referred to as PI-controller. In other use cases

this might not be enough and causes a slow response or a high frequents oscillation. The

final term to compensate these issues is the derivative term (D-term), given by:

KD

de(t)

dt

The derivative term takes the error’s change over into time account. This means, if the

current error is less than the previous one, the control is going in the right direction

and the D-term will start reducing the control-value to avoid overshooting. The effect

of the reduction depends on the slope of the error change. This works also in the reverse

direction, if the error is increasing the derivative term will boost the control-command

for a faster reaction time. The complete PID-controller is given by the sum of the three

terms:

u(t) = KPe(t) +KI

∫ t

0
e(τ)dτ +KD

de(t)

dt

The performance of a PID-controller is highly dependent on the tuning of the control

gains KP , KI , KD. This is often done in a experimental fashion, but there are many

Chapter 2. Preliminaries 30

x(t) Σ e(t)

P KPe(t)

I KI

∫ t
0 e(τ)dτ

D KD
de(t)
dt

Σ Plant y(t)

Measurementz(t)

Figure 2.16: Block diagram of a Proportional Integral Derivative (PID) controller

heuristic or automatic methods for estimating valuable gains.

2.6.4 Quadrotor Angular Velocity Control using PID

The following section presents how the PID-controller is employed in the field of MAVs.

General speaking there are three different state-properties to control: position, velocity

and angular velocity. Angular velocity control is the most important one of the three,

it operates on the lowest level and is essential for a stable flight, it’s the foundation for

position and velocity control. Position and velocity control are optional and can only

be provided if the MAV possesses special sensors e.g. GPS, motion capture or optical

flow sensors (see Subsection 2.6.5). The sensors providing the feedback measurements

for angular velocity are called gyros and are necessary on any multi-copter hardware,

they measure the rotation rate in degrees per second for the three principle axis: roll φ,

pitch θ and yaw, it’s represented by:

z(t) = (φ̇, θ̇, ψ̇)

The input for the controller is therefore defined as follows:

y(t) = (φ̇, θ̇, ψ̇, th)

with (φ̇, θ̇, ψ̇) as the desired angular rates and th is a baseline throttle command. The

output is the throttle commands for all four motors:

u(t) = (ω1, ω2, ω3, ω4)

The throttle baseline th is not a desired set point, it is the value all motors should have,

when all angle velocity inputs are zero and the drone is perfectly stable. The output

of the controller is added to this baseline-value in order to achieve the desired angle-

rate. The system described above is a Multiple Input Multiple Output control (MIMO)

system, where a PID-controller is only designed as a Single Input Single Output (SISO)

Chapter 2. Preliminaries 31

mechanism. In order to solve this problem, common MAV angular velocity controller

consist of a set of PID-controllers, one for each degree of freedom, parametrised as:

PIDφ, P IDθ, P IDψ. For each PID-controller the error is the difference between the

desired angular velocity and the actual value.

2.6.5 Cascaded PID Control

Position and velocity control suffer from the same issue, sensors or techniques available

to provide the required feedback have a relative slow update rate. Typical sensor or

techniques are e.g GPS, Visual SLAM and Visual Flow. This makes these feedback sys-

tem the bottle neck of the control-loop, since the motor can react much faster. Meaning,

if the position or velocity controller would sit at the lowest level of the control hierarchy

the control is only able to react to disturbances every time a new feedback comes in,

but the faster a error can be detected the better, especially in a highly dynamic system

like a multi-rotor platform. A typical solution for such a problem is the cascade control

approach, an example can be seen in Figure 2.17. In this approach there are multiple

levels of control, the lowest level are mostly controllers with a fast reaction time provided

by their sensors. In the case of an quadrotor MAV this would be the angular velocity

control, Internal Measurement Units (IMU) required for the feedback can have a usual

update rate between 200 to 1000 Hz and can therefore detect rapid changes.

Level 1 IMU Attitude
Estimator

Altitude
Controller

Level 2
Linear Velocity

Sensor
Linear Velocity

Estimator
Linear Velocity

Controller

Level 3
Linear Position

Sensor
Linear Position

Estimator
Linear Position

Controller

Level 0 IMU Angular Velocity
Estimator

Angular Velocity
Controller Actuators

Sensors Estimator Controller

Figure 2.17: The general high-level system architecture for an autonomous MAV.

Controllers with lower refresh rate like position control sit on top of the angular

velocity controller and pass down set points, these are than maintained by the low-level

controller, until a new set point is handed down. This allows the system to be much more

responsive to external disturbances. The higher level controller can consider the lower

level controller as a quasi-static system i.e. one that responds almost instantly and holds

the desired commands. This drastically simplifies the complexity of the controllers at a

higher level while still accounting for fast dynamics and the handling of disturbances at

Chapter 2. Preliminaries 32

a lower level. A drawback of this kind of approach is that it requires tuning for the PID-

gains at all levels. In respect to the position- and velocity-control this introduces four

new PID-controllers for each of those control-problems, controlling the position/velocity

on the x-axis, y-axis, z-axis and the yaw-rotation. But the high level controller don’t

require intensive tuning if the low-levels are performing as expected, most of the time

a general PI- or even P-controller is sufficient. Cascaded PID-controller are therefore

tuned from the bottom-up.

2.7 Conclusion

In this chapter we introduced the background relevant to this thesis. We introduced the

behaviours occurring in social insects swarms, on which the related work (Chapter 3)

and our proposed approaches are basing on (Chapter 4, Chapter 5 and Chapter 6).

In order to build the required knowledge foundation for the proposed technique in-

troduced in Chapter 7, we introduced machine learning techniques of neural networks,

reinforcement learning, in particular deep reinforcement learning and the filtering tech-

nique of the monte carlo localisation. Finally, we showed techniques necessary for the

coordination on our real-world platform, in form of quadrotor control and radio-based

distance estimation.

Chapter 3

Related Work

This chapter shows the related work relevant to this thesis. The work proposed in Chap-

ter 4 and Chapter 5, can generally be categorised as bio-inspired coverage approaches.

Area coverage is usually divided in different types of coverage, Section 3.1 provides a

general overview over types and common approaches. Since we are proposing ant- and

bee-inspired approaches to solve the problem of coverage, we highlight similar solutions

used in optimization and robotics in Section 3.2 and 3.3. Section 3.4 goes in further

detail into the coverage approach called StiCo, since this approach serves as foundation

and comparison for techniques introduced later in the thesis. In Chapter 7 we propose

a framework to provide bio-inspired coordination on pocket drones, since this also in-

cludes collision avoidance, we provide a general overview over the work in this area in

Section 3.5. The chapter is concluded in Section 3.6.

3.1 Coordination and Coverage Techniques

The concept of coverage is a metric for evaluating robotic systems and was first in-

troduced by Gage [47]. Gage defines three basis types of coverage: Blanket coverage,

where the objective is to achieve node formation which maximizes the total detection

area; barrier coverage, which aims to minimize the probability of undetected intrusion

through the barrier; and sweep- or repetitive-coverage with the goal to cover all acces-

sible interest points in an given environment over time, while maximizing the rate of

visits over all points and minimizing the total distance travelled by all robots. Blanket

coverage is most common for the deployment of mobile sensor networks in an unknown

environment, the sensor nodes are initially placed in a compact configuration, where the

nodes are trying to spread out such that the area covered by the network is maximized.

One example scenario for a specific use case is a hazardous material leak in a damaged

structure. Mobile sensor nodes equipped with chemical sensors spread out from a initial

position to gather information about location and concentration of the hazard. Due

to the fact that the communication infrastructure could be damaged the nodes have

to insure their own network structure, even if single nodes get lost or destroyed. An-

other popular approach in this field is the potential field technique, first introduced by

33

Chapter 3. Related Work 34

Khatib [63]. In his approach nodes are treated as virtual particles, covered by a virtual

force-field, which repels nodes from each other, the environment and obstacles to ensure

that the nodes will quickly maximize the coverage area. In addition to these forces,

nodes are subject to a virtual friction force. This force ensure that the network will

eventually reach a state of static equilibrium. This techniques has also been applied

for group formation problems for mobile robots [8, 94], which is to some extent similar

to the deployment problem of mobile sensor networks. In robotics, repetitive-coverage

can be described as a problem where a team of robots has to visit multiple Points Of

Interests (POI) in a known environment frequently, to perform certain tasks [35, 76].

The goal of such a algorithm is to keep the average visit frequency over all POIs high,

while achieving a minimal total travelled distance and a balanced workload over all

robots. Typical real world use cases for such a problem are patrolling, lawn mowing

and chemical spill clean up. Many approaches concerning multi-robot patrol partition

the area into sub-areas divided between the robots. Inside such a sub-area, each robot

applies a single robot patrol algorithm. Ahmadi and Stone [1] describe a negotiation-

based approach for distributing the area between the robots and dealing with events

such as addition or removal of robots to the environment. Jung and Sukhatme [57]

introduce a region based approach for tracking tracking targets in a system with mobile

robots and stationary sensors. Guo et. al [51] also divides the area between the agents

while focusing on their localization and sensor capabilities. Another important form of

multi-robot coverage is Terrain coverage or multi-robot exploration. It can be defined

as a problem where a robot tries to visit each and every location in a continues bounded

unknown environment by avoiding obstacles and perform defined tasks [26, 46, 78]. A

Terrain coverage algorithm must generate a coverage path, which is a chain of motion

steps for a robot, the optimal coverage path takes minimal time and guarantee to cover

the entire terrain and perform the task efficiently. Most approaches divide the in the

environment into grid cells and explored one cell at the time until the whole area is

covered. One of the first was Spanning Tree Coverage (STC) which solves single robot

coverage optimistically [45]. It is proved that STC is a polynomial time coverage that

divides the terrain into cells, creates a spanning tree and the robot circumnavigates

around it. The same idea was applied by Hazon and Kaminka on a multi-robot system

[53]. Several authors proposed marked based approaches in multi-robot exploration, in

which robots are making bids on a sub task of a exploration attempted [93, 98, 110].

These bids are based on values such as expected information gain and travelled cost to

a particular location. This seems to minimize the costs while maximizing the benefit.

These approaches rely heavy on a reliable communication link and the bidding-strategy

of each agent.

Chapter 3. Related Work 35

3.2 Ant Inspired Techniques

Ant-based multi-robot coverage is highly inspired by the notion of stigmergic commu-

nication introduced by Dorigo [28, 30–32] in 1992. The basic idea underlying this form

of communication is that pheromones are used as a medium for transmitting messages

among artificial ants. During the past few years, variants of Dorigo’s method, known as

Ant Colony Optimization (ACO), have been developed, and it has been shown that it

allows for very efficient distributed control and optimization in a variety of problem do-

mains e.g. scheduling problems, routing problems, assignment problems et. al. (Dorigo

et al. [29]). Wagner et al. [105] were the first, who invested stigmergic multi-robot co-

ordination for covering/patrolling the environment. In their approach, the robots were

supposed to be able to (1) deposit chemical odor traces and (2) evaluate the strength

of smell at every point they reach. Based on these assumptions, they used robots to

model an unmapped environment as a graph, and they proposed basic graph search

algorithms (such as Depth-First-Search and Breadth-First-Search) for solving robotic

coverage problems. Many other researchers used this graph-based modeling scheme in

order to design solutions for multi-robot patrolling/covering problems, e.g., Elor and

Bruckstein [36], Glad et al. [48], and Yanovski et al. [109]. In contrast to the mentioned

graph-based techniques, a geometrical framework can also be used for addressing the

swarm robotic coverage problem. One of the most important geometric techniques is

Voronoi-based coverage that has been introduced for solving robot coverage problems

(e.g., Cortes et al. [27], Schwager et al. [96]). These Voronoi-based techniques aim at

devising coverage algorithms, which work according to the following basic rule: Each

vehicle moves toward the center of its Voronoi region. Based on this rule, many re-

searchers have proposed modified covering approaches, which are adaptable to changes

in the environment and are provably convergent (e.g., Schwager et al. [95]; Breitenmoser

et al. [14]). However, all these geometrical algorithms require a group of robots with

the capability of direct communication and in most of the cases also need very complex

mathematical computations (e.g., calculating margins and center of mass for an indi-

vidual Voronoi region), which limits their potential real-world usage. Another related

research topic is focused on the ”real“ implementation of stigmergic communication in

real-world environments. For example, chemical substances such as ethanol (C2H5OH)

are used instead of natural pheromones by Fujisawa et al. [44].

Works like [75] by Dorigo et al. use the idea of robotic chain from Goss et al. [49].

In this approach the robots itself are used as the pheromone trail substitute. An agent

can have two different roles: chain member or explorer, the role determines a led light

color on the robot. In the beginning of the approach, the robots start exploring the

area around a homing beacon, if a certain distance threshold to the beacon or certain

time is passed a robot switches to the chain member role. When a robot is in the chain

member role it holds its position and other explorer agents can use this chain member

as an additional beacon. The distance threshold has to be smaller than the sensor range

Chapter 3. Related Work 36

of the robot, this allows the robot traverse the chain from start to finish. This principle

allows ant like exploring and foraging, but is limited by the size of the swarm.

StiCo (Stigmergic Coverage) introduced by Bijan Ranjabar et al. uses fluorescent or

“glow in the dark”-foil to simulate pheromones. In this solution each robot is equipped

with a led-light and when the robots move across the foil, they leave a glowing trail.

Duo to the properties of the foil the glow intensity fades over time, which symbolises

the decay of the ant pheromone. In StiCo the robots communicate indirect through

the marking of trails and by using a simple circular movement strategy it achieves a

scalable, robust and efficient coverage behaviour. This technique can achieve a voronoi-

like coverage, since this technique is part of the approach proposed in Chapter 5, StiCo

is explained in greater detail in Section 3.4.

These mentioned systems are categorised as swarm approaches since they are highly

distributed and every agent makes autonomous decisions based on their local informa-

tion, gathered from local sensing and communication. The general idea of swarm intel-

ligence is that the objective is not coded into each agent, rather the desired behaviour

emerges consequently from the interaction between the agents and their interaction with

the environment. This makes their development and evaluation process quite difficult.

Therefore, works like Winfield et al. [108] or Kazadi [61] introduce and examine the

concept of swarm engineering and conduct case studies in this field to apply the tradi-

tional analyses, design and test phases to swarm development, in order to work towards

dependable robotic swarms. Most swarm approaches are simple and homogeneous be-

haviours, executed on each agent, which makes them highly redundant and therefore

robust. Robustness is usually defined as the ability to provide the demanded function-

ality when single agents of the system fail. Since the failures in these system are mostly

base on hardware malfunctions, Winfield et al. apply in [107] a Failure Mode and Ef-

fect Analysis (FMEA), where they define and identify hazards (points of failure) and

propose methods to identify the optimal swarm size to provide the required reliability.

These approaches require always a estimated probability for the points of failures and

an estimate of the minimal number of agents required to accomplish the task, which is

sometime difficult to determine.

3.3 Bee Inspired Techniques

Bee Colony Optimization (BCO) was introduced independently by Lemmens et al.

(Lemmens et al. [70]; Lemmens and Tuyls [71]) and by Karaboga et al. (Karaboga [59];

Karaboga and Basturk [58]). Unlike ACO (which is only inspired from the notion of

stigmergic communication), scientists are inspired by various behaviors of bees: foraging

behavior in Lemmens et al. (Lemmens et al. [69]), Beehive protocol (Wedde et al. [106]),

BeeSensor (Saleem and Farooq [91]), bees mating procedure (Senthilkumar and Chan-

drasekaran [97]; Sahoo et al. [89]), and pheromone signaling mechanism (Caliskanelli

et al.[22]). Karaboga et al. [58, 59] introduced the optimisation algorithm Artificial

Chapter 3. Related Work 37

Bee Colony (ABC) in which bees represent the search agents and their environment

represents the potential solutions. In their work, the high-quality candidate solutions

represent a pollen source which encourages further exploration of the region by addi-

tional bee agents. In the networking context, protocols have been developed in which

network packets are treated as biologically inspired agents [2, 60]. In the Beehive pro-

tocol (Wedde et al. [106]), packets search for efficient routes through an IP network in

a process modelled after the foraging behaviour of bees. Similar work targeted specifi-

cally at Wireless Sensor Nodes (WSN) is BeeSensor (Saleem and Farooq [91]) in which

routing is performed via classes of packets following different types of bee behavior: for

example as scouts and foragers. The redundancy introduced by BeeSensor is capable of

increasing the proportion of delivered packets compared to common methods like Ad-hoc

On-demand Distance Vector-Routingalgorithmus (AODV) [77], although it experiences

increased latency due to the possibility for bee packets to select suboptimal routes during

exploration. A general framework through which a set of biological agents can attempt

to simultaneously satisfy multiple possibly conflicting objectives (such as latency, en-

ergy efficiency, and delivery success in a WSN) is provided in MONSOON (Boonma

and Suzuki [13]). Their previous work has also mapped the bee colony model more

directly to WSN hardware, with individual nodes representing individual bees, status

within the hive corresponding to node responsibilities, and signalling chemicals corre-

sponding to data packets. Recent work has applied bee protocols specifically to WSN

load balancing (Senthilkumar and Chandrasekaran [97]), which is inspired by the bees

mating procedure. This approach focuses on cluster set-up communication overheads

by restricting the communications with bee mating election algorithm. Removing the

redundant communications inside the cluster increases the successful delivery ratio while

decreasing the latency. Caliskanelli et al. explore the pheromone signaling mechanism

in honeybee colonies in Caliskanelli et al. ([18][22]) to solve the load balancing (i.e., to

distribute the network load among processing elements) and redundancy control issues

in largescale WSNs. Caliskanelli and Indrusiak improved their parameter-rich technique

in Caliskanelli and Indrusiak ([22]) by tuning its parameters and modifying their ini-

tial work (Caliskanelli et al.[19]). Later on, they applied pheromone signaling process

on WSRNs (Wireless Sensor Robot Networks) in [20]. Another biological behaviour

adopted for exploration and mult-robot coordination is the recruiting and navigation

strategy used in a bee colonies. The former is used to distribute knowledge to other

member of the colony. More specifically by direct messaging (dancing), agents are able

to communicate distance and direction towards a target [104]. The latter is applied to

efficiently navigate through an unknown environment. Bees use a strategy called Path

Integration (PI). They compute their present location from their past trajectory contin-

uously and, as a consequence , can return on a direct path back to the starting position

(Lamrinos el al. [68]). A popular bee inspired optimisation algorithm is the Artifical

Bee Colony (ABC) introduced by Karaboga [3]. He defines three types of information

which is exchanged during the direct communication (bee dance): The direction of the

Chapter 3. Related Work 38

target position, the distance and the quality or pay-off. Also he divides the bee colonies

in two types of robot/bees:

• Scout bees: Carries out a random search for target positions and return to the

hive to inform the other bees about the gathered information.

• Onlooker bees or unemployed bees: Interpret the information of the dance and

decide the best target position to go for next.

ABC was later used for an algorithm for path planning of a robot by for example by

Savasani and Jhala [79] or Saffari [87]. These algorithm are proposed to minimizing the

travelled time and distance.

3.4 StiCo

This section describes StiCo (Stigmergic Coverage), an ant stigmergy (Section 2.1.1) in-

spired coverage approach. StiCo was introduced in [82], it’s highly robust, adaptive, easy

to implement and serves as foundation and comparison for the in this thesis proposed

algorithm called HybaCo (Section 5).

3.4.1 StiCo Principle

The StiCo approach follows the principle of indirect, stigmergic coordination to establish

a simple but efficient coverage of the environment. In contrast to the classical stigmergic

coordination in Ant System (AS) [28], where 1) agents have a tendency to move straight

with minor deviations, and 2) traces act as sources of attraction, in StiCo robots orbit in

circles, instead of moving straight, and the traces have repulsive characteristics instead

of attracting the agents. These two differences turn the path finding characteristic of AS

into efficient area coverage of StiCo. The robots are equipped with two simple sensors

(in the front-left and front-right directions like an ant antenna), capable of detecting

immediate traces. Each robot orbits in a circle with a predetermined radius. Based

on the circling direction (CW or CCW), one sensor would be considered as the interior

sensor and the other as the exterior one. When the interior sensor detects pheromone,

the robot changes its circling direction immediately as shown in Figures 3.1(a) - 3.1(c)

and Algorithm 3. Otherwise, if exterior sensor detects pheromone, the robot continues

rotating in the same direction until it doesn’t detect pheromone anymore. The amount

of pheromone deposited by each robot can practically be adjusted based on pheromone

evaporation rates, in a way that robots do not collide with their own pheromones. For

further information on StiCo principle see the work by [81]. The robustness, scalability

and functional extensibility (see the work by [82]), make StiCo an interesting alternative

to Voronoi-based and graph-based multi-robot coverage approaches which currently are

dominant in the field. Moreover, because of these features StiCo has a broad application

potential and can be used for various monitoring, rescue, and patrolling missions.

Chapter 3. Related Work 39

sensor detects pheromone, the robot continues rotating in the same direction until it
does not detect pheromone anymore. The amount of pheromone deposited by each
robot can practically be adjusted based on pheromone evaporation rates, in a way that
robots do not collide with their own pheromones. For further information on StiCo
principle, see the work by Ranjbar-Sahraei et al. (2012c).

13.3.1.2 Simulation of StiCo

In order to demonstrate the performance of StiCo, first we translate the previously
mentioned rules into an algorithm as shown in Algorithm 1.

The StiCo algorithm is simulated with identical robots in a 40 m!40 m field. The
linear velocity of each robot is 2 m/s, and the angular velocity is set to"1.0 rad/s.
Further details of the simulation environment are provided by Ranjbar-Sahraei
et al. (2012b). The coverage algorithm for 40 robots that move based on StiCo is illus-
trated in Figure 13.3.

In order to demonstrate potential capabilities of this simple algorithm, we consider
a nonconvex unknown environment as shown in Figure 13.4a. This environment can

(a) (b) (c)

Figure 13.2 StiCo coordination principle: (a) Robots circle around. (b) The right robot detects
pheromone. (c) The right robot changes circling direction.

(a) (b)

Figure 13.3 Evolution of StiCo in a simple environment (blue shadows are deposited traces).
(a) Initial snapshot. (b) Final snapshot.

Bio-inspired multi-robot systems 281

sensor detects pheromone, the robot continues rotating in the same direction until it
does not detect pheromone anymore. The amount of pheromone deposited by each
robot can practically be adjusted based on pheromone evaporation rates, in a way that
robots do not collide with their own pheromones. For further information on StiCo
principle, see the work by Ranjbar-Sahraei et al. (2012c).

13.3.1.2 Simulation of StiCo

In order to demonstrate the performance of StiCo, first we translate the previously
mentioned rules into an algorithm as shown in Algorithm 1.

The StiCo algorithm is simulated with identical robots in a 40 m!40 m field. The
linear velocity of each robot is 2 m/s, and the angular velocity is set to"1.0 rad/s.
Further details of the simulation environment are provided by Ranjbar-Sahraei
et al. (2012b). The coverage algorithm for 40 robots that move based on StiCo is illus-
trated in Figure 13.3.

In order to demonstrate potential capabilities of this simple algorithm, we consider
a nonconvex unknown environment as shown in Figure 13.4a. This environment can

(a) (b) (c)

Figure 13.2 StiCo coordination principle: (a) Robots circle around. (b) The right robot detects
pheromone. (c) The right robot changes circling direction.

(a) (b)

Figure 13.3 Evolution of StiCo in a simple environment (blue shadows are deposited traces).
(a) Initial snapshot. (b) Final snapshot.

Bio-inspired multi-robot systems 281

sensor detects pheromone, the robot continues rotating in the same direction until it
does not detect pheromone anymore. The amount of pheromone deposited by each
robot can practically be adjusted based on pheromone evaporation rates, in a way that
robots do not collide with their own pheromones. For further information on StiCo
principle, see the work by Ranjbar-Sahraei et al. (2012c).

13.3.1.2 Simulation of StiCo

In order to demonstrate the performance of StiCo, first we translate the previously
mentioned rules into an algorithm as shown in Algorithm 1.

The StiCo algorithm is simulated with identical robots in a 40 m!40 m field. The
linear velocity of each robot is 2 m/s, and the angular velocity is set to"1.0 rad/s.
Further details of the simulation environment are provided by Ranjbar-Sahraei
et al. (2012b). The coverage algorithm for 40 robots that move based on StiCo is illus-
trated in Figure 13.3.

In order to demonstrate potential capabilities of this simple algorithm, we consider
a nonconvex unknown environment as shown in Figure 13.4a. This environment can

(a) (b) (c)

Figure 13.2 StiCo coordination principle: (a) Robots circle around. (b) The right robot detects
pheromone. (c) The right robot changes circling direction.

(a) (b)

Figure 13.3 Evolution of StiCo in a simple environment (blue shadows are deposited traces).
(a) Initial snapshot. (b) Final snapshot.

Bio-inspired multi-robot systems 281

Figure 3.1: StiCo coordination principle: (a) robots circle around. (b) the right robot
detects pheromone. (c) the right robot changes circling direction.

Algorithm 3: StiCo Algorithm

Require: Each robot can deposit/detect pheromone trails
Initialize: Choose circling direction (CW/CCW)
loop

while (no pheromone is detected) do
Circle around
deposit pheromone

end while
if (interior sensor detects pheromone) then

Reverse the circling direction
else

while (pheromone is detected) do
Rotate

end while
end if

end loop

3.5 Collision Avoidance

As mentioned before we propose a framework to provide bio-inspired coordination on

pocket drones in Chapter 7, since this also includes collision avoidance, we provide a

general overview over the work in this area. In the field of multi-robot systems, collision

avoidance is usually defined as the task of avoiding the collision with static and dynamic

object. Where the avoidance of static object can generally be solved with traditionally

planning, is the avoidance of dynamic objects more complex. The native approach is to

observe consecutive obstacle positions to extrapolate future trajectories. Dynamic object

are usually defined as a velocity obstacle (VO [41]), which is a geometric representation

showing all velocities, which will eventually result in a collision. Robots are pro-active

and neglecting this fact can lead to inefficient trajectories or oscillation, Van den Berg

et al. [103] introduces the concept of reciprocal velocity obstacle (RVO) to address

reciprocity: it considers robots as pairs and splits their responsibility of the collision

avoidance, between each other. Over the years different variations have been developed

to address different problems of RVO, these approaches include e.g. HRVO [99] and

CALU [54].

Chapter 3. Related Work 40

Current research to reduce the computational overhead aims to imitate the behaviour

of the previous behaviours through deep-neural networks in a supervised learning setting

(e.g. [73]), but this is mostly applied in simulations or full-observable environments,

where the global positions of all robots is given.

3.6 Conclusion

This chapter shows related work relevant to this thesis. We provide an general overview

over coordination, collision avoidance and coverage techniques and detail the strongly

related ant- and bee-inspired approaches. We goes in further detail into the coverage

approach called StiCo, since this approach serves as foundation and comparison for

techniques introduced later in the thesis.

Chapter 4

Bee Pheromone Based Coverage

This Chapter introduces a novel multi-robot coverage approach inspired by the pheromone

signalling behaviour of honeybees, described in the preliminaries Section 2.1.3. The aim

of this technique, named BeePCo (Bee Pheromone Coverage), is to provide a simple,

scalable algorithm for finding a static arrangement of robots that maximises the total

detected area, also known as blanket coverage. Each robot in this team acts individually

on its local information to improve the performance of the whole collective. This can

e.g. be applied in the context of mobile Wireless Sensor Networks (WSN). Additionally,

it serves as a foundation for a surveillance and exploration approach illustrated in Chap-

ter 5. The remainder of this chapter is structured as follows. Section 4.1 introduces the

biological principle on which the proposed coverage approach is inspired. Additionally,

it summarises a pheromone based WSN load balancing approach, we can utilise, if nec-

essary. Section 4.2 covers the proposed pheromone signalling based coverage algorithm

for Multi-Robot Systems (MRSs). Section 4.3 describes the employed simulator. It

continues with the experimental setup and results in Section 4.4 and finishes with the

conclusion in Section 4.5.

4.1 Introduction

In previous work on Pheromone Signalling (PS) [18, 21, 22], bee pheromone signalling

is employed for service load-balancing in WSNs. The algorithms aim is to maximise the

area, a certain network service is provided by the wireless sensor nodes, while minimising

the number of active nodes, in order to save energy. Since the proposed multi-robot

coverage can be applied in context of WSNs and its signalling procedure is quite similar

to PS’s, we integrate PS’s principle into BeePCo to allow service load balancing, if

required. The load-balancing in already evaluated in [18, 22] and this chapter is therefore

mainly focusing on the multi-robot coverage.

The bee-inspired coverage algorithm, BeePCo, described in this section is a com-

pletely decentralised approach that has low computational overhead and employs direct

local communication. Changes in pheromone levels are used by many social animals

to orchestrate the colony by assigning responsibilities to each individual. Roberts [85]

41

Chapter 4. Bee Pheromone Based Coverage 42

explains the process of larvae differentiation in beehives as an example of such orches-

tration. Bees have developed a special hormonal system to ensure every beehive has

a queen, which maintains the stability of the colony and orchestrates the behaviour of

all other bees. Throughout its life, a queen bee stimulates a pheromone called Queen

Mandibular Pheromone (QMP), which makes the worker bees aware of its presence as

queen. This hormonal mechanism works as follows: the worker bees lick the queen bee

and passes the pheromone, to the others. If there is no pheromone passed through the

worker bees, they will consider the queen to be dead. Consequentially, workers will select

a larva to be fed with large amounts of the royalactin protein. Royalactin protein induces

the differentiation of honeybee larvae into a queen. If worker bees keep receiving the

pheromone, they are aware of the queen bee’s presence and will take no action towards

raising a new queen. This behaviour is described in greater detail in Section 2.1.3.

The proposed coverage technique is inspired by the pheromone propagation, and

PS’s load-balancing takes inspiration from the differentiation between queen and worker

bees. In the context of load-balancing, the role of a queen bee denotes a robot that is

responsible for managing the execution of all required services and a worker-robot idles

to save energy.

Throughout this thesis we will refer these robots as Queen Robots (QR) and their re-

sponsibility (service) is to sense their surrounding area, e.g. for exploration or intrusion

detection purposes. The basic strategy of the algorithm is based on the periodic trans-

mission of pheromone by QRs, and its retransmission, by recipients, to their neighbours.

The pheromone level of each robot decays over time and distance to the source. All

robots accumulate the pheromone received from other QRs and if at a particular time

the pheromone level of a robot is below a given threshold this robot will differentiate

itself into a QR and execute the service.

4.2 Pheromone Signalling Based Coverage Technique

This section focuses on the coverage performance of BeePCo and disregards the load

balancing for now. All experiments are therefore executed with an “infinitely” high

pheromone threshold to ensure the robot’s activity. Although the coverage is not par-

ticularly benefiting from service load-balancing, it is still described for the sake of com-

pleteness and to provide a base for future applications.

The pheromone propagation via licking in a bee-hive, is in the proposed BeePCo algo-

rithm substituted by local messages between neighbouring robots. Each pheromone mes-

sage includes the robot-identifier i and the position P , where the it is coming from. The

pheromone intensity is derived from the relative distance between sender and receiver.

By accumulating all received pheromones, a robot is able to calculate the pheromone

levels in the environment. The passed position information can either be global or in

the local frame of the receiver.

Chapter 4. Bee Pheromone Based Coverage 43

The level of pheromone indicates how well a certain area is covered. Areas in the

environment having a lower level of pheromone, at a given time, demonstrate a lower

robot density as opposed to other parts. This means that areas with low pheromone

level have either low coverage, or are not covered at all. The agents in BeePCo are

therefore repelled by pheromone in order to move towards areas with a low density.

The proposed algorithm consists of the five following parts, which are executed on

every robot of the MRS: the differentiation cycle, movement process, wall detection and

the decay of pheromones are time-triggered. The remaining pheromone propagation

occurs in an event-triggered process.

The first time-triggered part, referred to as the differentiation cycle (Algorithm 4),

is part of the load-balancing and is executed by each robot of the MRS, every TQR time

steps. On execution, the robot checks its current pheromone level (Hsum) against a

predefined level (thresholdQR), the robot will act as a Queen Robot (QR) and provide

the required service, if the level is lower than said threshold. Hsum is the sum of all

individual pheromone clouds Hi , with i being a unique id of a specific robot. Hsum can

be formalised as:

Hsum =
n∑
i

Hi

The summed up pheromone is only used for load balancing and its level is decayed over

time. QRs transmit pheromone, to its network neighbourhood to make its presence

felt. Each pheromone message of a robot s is represented as a three-dimensional vector

pms = {Mh, Ps(t), id}. The first element Mh denotes the distance to the source in

hops. Hops indicate the number of transmissions of a message so far. This means that

a pheromone message has a hop count of zero at its source. The pheromone dosage of a

message is inversely proportional to the euclidean distance between the senders position

Ps(t) and the receiver position Pr(t), at time t. This means the closer the sender (s),

the more intense the calculated pheromone dosage Hs, which is defined as follows:

Hs =

Hrange − ‖Pr(t)− Ps(t)‖

Hrange
, if ‖Pr(t)− Ps(t)‖ < Hrange

0, otherwise

(4.1)

Where Hrange is defined as the maximal range a pheromone can travel and Pr(t) as the

position of the receiver (r). By using this equation Hs will always be Hs ∈ [0, 1]. The

last element (id) of the message is an unique identifier of the robot.

The event-triggered part of BeePCo deals with the propagation and information

extraction of the pheromone messages. The purpose of propagation is to extend the

influence of a QR, beyond its transmission range. Propagation is not a periodic ac-

tivity, it is triggered every time a robot receives a pheromone dose. The pseudocode

is given in Algorithm 5. Messages with a higher hop count than thresholdhopcount are

not propagated, this reduces the pheromone influence and prevents an infinite loop of

message propagation. In the case that the hop count of a message, of sender s, is below

Chapter 4. Bee Pheromone Based Coverage 44

Algorithm 4: Differentiation Cycle for Robot i

1: every TQR do
2: if (Hsum < thresholdQR) then
3: QR =True
4: broadcast pmi = {0, Pi, i}
5: else
6: QR = False
7: end if

the defined threshold (thresholdhopcount), the robot will calculate the pheromone level

according to Equation 4.2, add it to total pheromone level Hsum and update the senders

pheromone dosage Hs, according to Equation 4.2.

Algorithm 5: Pheromone Propagation Trigger Procedure of Robot i

1: pm is received
2: if (pm.Mh < thresholdhopcount) then
3: s = pm.id
4: update Hs according to Equation 4.2 using sender position P
5: increase pm’s hop count Mh by one
6: save pm’s position P as Ps
7: broadcast pm
8: else
9: drop pm

10: end if

The virtual pheromone represents the internal estimation of the covered areas in the

environment. If an agent loses the direct/indirect connection to the robot covering an

area, this estimation becomes more uncertain over time. In order to allow the sensing

these areas again, the pheromone is decayed over time, similarly to pheromone seen

in ant- and bee-colonies. Pheromone occurring nature, is gas which evaporates in an

exponential fashion. Its evaporation rate is usually the pheromones half-life period ht,

where ht is the duration it takes to evaporate half of the current dosage. Since a dosage

is always reduced to its current half, in a constant time-period, the pheromone decay is

exponential and can be formalised as follows:

H ′i = Hi · 0.5
∆t
ht (4.2)

With ∆t being the time past since the last update. The pseudocode in Algorithm 6

shows the decay-cycle for agent i in a swarm of n robots.

Chapter 4. Bee Pheromone Based Coverage 45

Algorithm 6: Decay Cycle

1: Every TQR Timesteps
2: c = 0
3: while c < n do
4: Hc = Hc · 0.5

∆t
ht

5: c = c+ 1
6: end while

The pheromones of each robot i are presented by Hi, BeePCo’s purpose is to avoid

the pheromone in order to move towards uncovered areas. This is done in periodic

movement cycles shown in Algorithm 7. Since the pheromone decay is exponential,

the level will never decrease to exactly zero, BeePCo has therefore a small movement

threshold (Movementthreshold), if any Hi exceeds this threshold the robot will decide on

a new movement action, otherwise it will stay at its current location.

Algorithm 7: Move Cycle

1: Every TQR do
2: if (pheromone present) then
3: pheromone-guided moving decision
4: else
5: stop movement
6: end if

The movement decision itself is done by accumulating direction pointing from the

pheromone towards the robot. These two dimensional vectors are normalised and

weighted by their current pheromone dosage, to intensify avoidance of closer clouds.

The accumulated vector is than multiplied by the robots maximal velocity Vmax, result-

ing in the final control command Vxy, representing the desired velocity on the x- and

y-axis. As discussed before, the pheromone can’t have a higher dosage than one, but if

the sum of all vectors is higher than one, BeePCo will normalise the sum, to limit Vxy

to the maximal velocity. Additionally, the algorithm only considers pheromones with

a higher dosage than Thresholdmovement. Algorithm 8 shows the pseudocode of this

procedure.

If the virtual pheromones evaporates and if the robots doesn’t receive new messages

it surveils the current position until new connections are established. This happens when

a robot finds an area, which is not in the sensor range of any other robot. Additionally

BeePCo has a last, time triggered routine, to avoid collision with walls. This is also

essential to maximise the sensor coverage. Robots without such a system would collide

with the walls and therefore waste almost half of their sensor area, since the area is cut

of by the wall. The mentioned routine handles walls like an other robot, this has the

advantage that it can employ the same motion circle.

Chapter 4. Bee Pheromone Based Coverage 46

Algorithm 8: Moving Decision for Robot i

1: Every TQR Timesteps
2: initialise Vxy = (0, 0)
3: initialise s = 0
4: while s < n do
5: if Hs > Thresholdmovement then
6: Vxy+ = Hs · Pi−Ps

‖(Pi−Ps)‖
7: end if
8: s = s+ 1
9: end while

10: if ‖Vxy‖ > 1 then

11: Vxy =
Vxy
‖Vxy‖

12: end if
13: Vxy = Vxy · Vmax

If a wall is detected by the sensors, the robot estimates the closest position to the wall

Pwall and calculates the pheromone level Hwall to this position, according to Equa-

tion 4.2. Position and pheromone level are stored and the next time the motion cycle

is triggered, it will avoid the “wall”-pheromone in the same way it avoids the virtual

pheromone coming from the other robots. The whole flow of wall detection is represented

in the pseudo code of Algorithm 9.

Algorithm 9: Wall-Detection Cycle

1: Every TQR do
2: if (wall is detected) then
3: estimate closest position to wall Pwall
4: calculate Hwall according to Equation 4.2.
5: save Pwall and Hwall

6: end if

4.3 Simulation

This section provide a general overview over the employed simulator structure in Sec-

tion 4.3.2 and describes its ant-pheromone simulation in Section 4.3.2. The ant-pheromone

simulation is a requirement for the coverage approach StiCo, which serves as a compar-

ison for BeePCo.

4.3.1 Structure

To evaluate the performance of BeePCo, we designed a three-tier simulation. The first

layer being the physical layer, responsible for simulating simple inertia, acceleration,

collision detection with the environment and the pheromone for StiCo. For more de-

tail about the pheromone simulation see Section 4.3.2. The second layer is split into

Chapter 4. Bee Pheromone Based Coverage 47

Robot Sensors Actuators

Agents BeePCo

Environment Physical Model

Communication

... StiCo

Figure 4.1: Simulator structure

communication-simulation and the robot-model. The former is providing the communi-

cation model, which allows communications for robots within each others communication

range. The latter is the robot-model, enabling methods for reading sensor-data and use

actuators of the robot, which are then accessed by the third and final agent layer. Agents

using algorithms like BeePCo operate on this layer and employ the provided information

to make movement and communication decisions.

4.3.2 Ant Pheromone Simulation

The ant-pheromone simulation proposed in [83], divides the environment into a grid, with

each grid-cell representing the current pheromone level at this position, see Figure 4.2.

While the robots are moving they expel pheromone, every Ts time-steps, increasing levels

of cells at the back of the robot to the maximal level of Pmax.

In order to simulate the decay of the pheromone, the simulation applies a linear

reduction by the factor Pdecay, this can be formulated as follows:

P ′xy = Pxy · Pdecay ·∆t

with Pxy being the pheromone level grid-cell x and y and ∆t being the time past since

the last update. All required parameters are summarised in the following table:

Parameter Definition

Pmax Maximal limit of pheromone per cell
Ts Update interval radiation

Pdecay Pheromone decay per second

Table 4.1: Ant-pheromone simulation parameters

Chapter 4. Bee Pheromone Based Coverage 48

Robot
P

h
erom

o
n

e
In

ten
sity

100%

0%

Figure 4.2: Simplified visualisation of the pheromone simulation. Each grid-cell rep-
resents the pheromone level at that position and the pheromone linear decayed over

time.

4.4 Evaluation Environment and Experimental Results

The following section describes the evaluation process and results. It starts by intro-

ducing the evaluation metrics in Section 4.4.1, continues with a description of the test

environment and robot algorithm settings in Section 4.4.2 and concludes with the ex-

perimental results in Section 4.4.4.

4.4.1 Coverage Metrices

We are interested in the total sensor coverage, meaning the area which is detected by

the sensors of all robots combined. Redundant sensed areas are only counted once,

therefore the maximal sensor coverage is a configuration where there is no overlap. This

can also be classified as 1-coverage, because each point has to be covered by just one

sensor in order to extract the required information. This comes from the k-coverage

terminology, where k is the number of sensor required to extract the information from

a defined point. An example for a higher k-coverage problem would be triangulation for

cell-phone localisation, where a phone has to be covered by three cell-phone towers in

order to determine the position, this case is therefore defined as 3-coverage.

In order to calculate how evenly the environment is scanned by the robots, the

environment is divided into a grid. In each time-step, the evaluation checks if a cell of

the grid is covered by a sensor, if this is the case a counter related to the cell is increased

by one. After a run, the evaluation is calculating the mean µ and standard deviation σ

between these scan-counters. If the environment is scanned in perfect uniform fashion all

cells have the same scan-count and the standard deviation is zero. In order to illustrated

this, the thesis is employing a heat-map-visualisation. In this representation the total

scan-count of each cell is divided by the number of time-steps, resulting in the percentage

of the total time a certain cell is covered by a sensor. The produced image or heat-map,

colours the cells in a gradient colour-scheme, with white symbolising 100% coverage and

black 0% coverage. Figure 4.3a shows a simplified heat-map where a sensor covering one

cell, is placed in a fixed location for the full duration of the experiment. Since the robot

Chapter 4. Bee Pheromone Based Coverage 49

100%

0%

(a)

100%

0%

(b)

Figure 4.3: Simplified heat-map visualisation: (A) shows a scenario where the robot
is staying in one location for the whole duration of the experiment. (B) illustrates a

scenario where the robot visited each cell the same amount of time.

in this scenario is staying at one location, this location has 100% coverage over time and

is therefore coloured in white, the remaining cells have a coverage of 0% resulting in a

black colouring. Figure 4.3b illustrates the optimal case where each cell is visited the

same amount of times, which results in an even colouring.

4.4.2 Environment

The test-area is of size 300 cm× 300 cm representing the robotics lab of the University.

The area has a square shape and robots are initialised in the centre of the environment

(Figure 4.4b). More complex areas are evaluated in Chapter 6. The simulated robots

match the specification of E-Pucks, which are small low-cost robots with a diameter

of 70 mm and a communication and sensing range of 25 cm (Figure 4.4a). Using these

micro robots with a limited communication and sensing range has the advantage that

the test environment can be relatively small in order to test the algorithm on a larger

number of robots. The application can be easily scaled up to bigger robots with a

higher communication and sensor-range, if the ratio between those properties (sensing

and transmission-range) stays relatively the same. The sensor- and transmission range

ratio in the scenario of the E-Pucks is quite interesting since it is 1:1, which makes a

maximal sensor coverage more difficult. Because robots are not able to communicate

with each other, if the distance between them is bigger than the sensor range. This means

two robots can have a redundant sensor area without them knowing. For example, if

the transmission range is double the length of the sensing range, robots would be able

to communicate until sensor areas are perfectly tangential without overlap.

Chapter 4. Bee Pheromone Based Coverage 50

(a) E-Puck (b) Environment

Figure 4.4: (A) shows an E-Pucks robot, modelled by simulation. (B) illustrates the
squared test-environment with the start position in the center.

4.4.3 StiCo Parameters

StiCo is ant-pheromone coverage principle (Section 3.4), used as a comparison for

BeePCo. In order to make StiCo perform optimally and compatible with BeePCo,

its parameters are set as follows. StiCo is moving in circles with the radius rs, to be able

to scan the area inside this circle, the radius has to be smaller or equal the sensor range

of the robot. Therefore we chose rs = 25 cm to match the sensor range of the E-Puck.

An other parameter is the decay rate (Pdecay) of the pheromone, used in the simu-

lation. As described before, StiCo moves in a circular fashion, marking it covered area

with a pheromone trail. Optimally the pheromone evaporates in around the same time

the robot finishes a complete a full revolution (Figure 4.5b). If the evaporation rate is

too fast, the area is just partially or not marked at all (Figure 4.5c). Additionally, if the

evaporation rate is too slow, uncovered areas could be surrounded by a trail long after

the robot moved on (Figure 4.5a).

Since we know the maximal velocity of the robot (Vmax = 15 cm/s) and circumfer-

ence of the circle a robot travels, we can calculate the duration required to complete a

revolution as follows:

Td︸︷︷︸
duration

= 2rsπ︸︷︷︸
circumference

/ Vmax︸ ︷︷ ︸
velocity

(4.3)

The simulation uses a linear model to represent the decay of the pheromone. Since we

know that the pheromone radiated form the robot has the start value of Pmax. We can

generalise the required decay rate with linear equation:

Ps = −Pmax
Td

(4.4)

Chapter 4. Bee Pheromone Based Coverage 51

(a) (b) (c)

Figure 4.5: A: Shows a slow pheromone decay. B: Shows an optimal pheromone
decay. C: Shows a fast pheromone decay.

By the setting the maximum pheromone level to one (Pmax = 1), we derive a decay

rate of −0.1 units/s. All the required parameters and their setting is summarised in

Table 4.2.

Parameter Definition Value

Pmax Maximal limit of pheromone per cell 1.0
rs Rotation radius 25 cm

Pdecay Pheromone decay rate −0.1 units/s

Table 4.2: StiCo parameter settings

4.4.4 Experimental Results

The main purpose of BeePCo is to provide blanket coverage, e.g. to find automatically

configurations for WSN nodes. Blanket coverage is aiming to maximise the combined

area which is sensed by all robot sensors combined, therefore it’s trying to reduce the

redundant areas. This Section evaluates the different performances and properties of

BeePCo and StiCo in different scenarios, to see how it can be improved or combined.

The results of this study is used in the HybaCo algorithm described in Chapter 5. We

compare converging speed, maximal area covered and the distribution over time on

different numbers of robots (10, 20, 30 and 40). We define the “distribution over time”,

as each cells total coverage time over the duration of a run, described in Section 4.4.1 and

illustrated in Figure 4.3. BeePCo’s performance is compared with the StiCo algorithm

(Section 3.4). Additionally we compare both algorithms against the maximal possible

sensor coverage with respect to the number of robots. This metric represents the optimal

case where the robots’ sensor range does not intersect with each other. This can also

be referred to as potential coverage. We will refer the potential coverage as MaxCo.

BeePCo and StiCo are configured as follows:

• BeePCo: Thresholdhopcount = 10, Thresholdmovement = 0.001, ThresholdQR =

10, 000, TQR = 0.2 sec and ht = 0.4 sec.

• StiCo: Pdecay = −0.1 units/s and rs = 25 cm (See Section 4.4.3).

Chapter 4. Bee Pheromone Based Coverage 52

(a) StiCo (b) BeePCo

Figure 4.6: The distribution of robots in the arena using a MRS of 10 robots on StiCo
and BeePCo algorithms.

(a) StiCo (b) BeePCo

Figure 4.7: The distribution of robots in the arena using a MRS of 20 robots on StiCo
and BeePCo algorithms.

Figures 4.6, 4.7, 4.8 and 4.9 illustrate how evenly the area is covered over time, using

10, 20, 30 and 40 robots on a single run. The figure employs the colour scale described

in Subsection 4.4.1, where a 100% covered cell is coloured white, a 0% covered cell

is represented in black and the remaining percentages are shown in a gradient colour

between those two extremes.

The more evenly the total area is coloured, the more uniform is the distribution of

the robots positions over time. Besides showing the performance of StiCo and BeePCo

in a single run, the heat-map visualises also how the number of robots influences the

distribution or robot movement over time. In the case of StiCo, Figure 4.6 shows that

the algorithm converges, in the case of 10 robots, to a steady state where the robots

circle around the same position, shown as the red circles. This means the robots found a

configuration where the rotation circles do not overlap and the robots are not influenced

by each others pheromones. By increasing the numbers of robots in Figures 4.6a - 4.9a,

the area is covered more and more evenly, and the average cell coverage also increases

proportional to the amount of robots. This is due to the fact, that the increase in robots,

increases the amount of pheromone trails in the environment. In order to avoid those

Chapter 4. Bee Pheromone Based Coverage 53

(a) StiCo (b) BeePCo

Figure 4.8: The distribution of robots in the arena using a MRS of 30 robots on StiCo
and BeePCo techniques.

(a) StiCo (b) BeePCo

Figure 4.9: The distribution of robots in the arena using a MRS of 40 robots on StiCo
and BeePCo techniques.

trails StiCo triggers its movement routines, described in Subsection 3.4, resulting in a

more even spread through the environment.

The same effect can be seen in the BeePCo heat-map Figures 4.6b- 4.9b, but they

also show that BeePCo is able to find a stable configuration for 10 and 20 robots.

The corresponding Figures 4.6b and 4.7b illustrate that the algorithm converges to

a configuration where the robots are not influenced by each other and stay in their

positions, shown as white circles. This is due to the fact, that the robots have to move

out of each others sensor range to maximise the covered area, resulting in a lost of

connections since sensor- and transmission range are the same. Without communication

links BeePCo will decay the virtual pheromone level until the movement routine is not

triggered any more. The areas have mostly no overlap, which increases the maximal

covered area, but the lack of movement doesn’t allow an evenly scanned area like StiCo

does.

Beginning with 30 robots (Figures 4.8b), BeePCo’s agents are more and more in-

fluenced by each other and are starting to move, this can be seen by a little bit more

variation in colour across the whole area. The last Figure 4.9b shows an extreme case

Chapter 4. Bee Pheromone Based Coverage 54

100 101 102 103

Time Steps

0.0

0.1

0.2

%
 A

re
a

Co
ve

ra
ge

BeePCo(10)
StiCo(10)
maxCo(10)

(a) The average percentage of the total area coverage, shown for each time step of the run (10
Robots).

BeePCo StiCo

0.0

0.2

0.4

0.6

0.8

%
A

v
e
ra

g
e
 C

e
ll

C
o
v
e
ra

g
e

BeePCo(10)

StiCo(10)

(b) Distribution over all grid-cells in the environment, showing how many percent of the total
run time a cell is covered (10 Robots).

Figure 4.10

where the area size is too small for the number of robots, meaning it is not possible to

distribute the robots in such a way, that there are no redundant sensor areas.

In the case of the 3m × 3m environment the maximal number of robots to allow

no overlap is 35. Therefore a minimum of 5 robots will always have an overlap in the

sensed areas. This results in a continues movement of BeePCo, in order to avoid the

virtual pheromone. Figures 4.9b show a higher average cell coverage than its StiCo

counterpart (Figures 4.9a), this is mostly due to BeePCo’s direct and linear movement

strategy against the circle path behaviour of StiCo.

Figures 4.10a - 4.13a show the progression of the covered area over the course of a

run in respect to the number of robots, ranging from 10 to 40. The graphs show the mean

and standard deviation at each time step over a total of 30 runs to ensure statistical

Chapter 4. Bee Pheromone Based Coverage 55

100 101 102 103

Time Steps

0.0

0.1

0.2

0.3

0.4
%

 A
re

a
Co

ve
ra

ge

BeePCo(20)
StiCo(20)
maxCo(20)

(a) The average percentage of the total area coverage, shown for each time step of the run (20
Robots).

BeePCo StiCo

0.0

0.2

0.4

0.6

0.8

%
A

v
e
ra

g
e
 C

e
ll

C
o
v
e
ra

g
e

BeePCo(20)

StiCo(20)

(b) Distribution over all grid-cells in the environment, showing how many percent of the total
run time a cell is covered (20 Robots).

Figure 4.11

significance. It can be seen that the standard deviation (σ) over all runs, illustrated by

the error bars, is negligible small for BeePCo and StiCo, which shows the reliability of

both algorithms. In terms coverage speed, it can be seen that BeePCo converges faster

towards its maximal coverage than StiCo, this effect is amplified by an increasing number

of robots. Where the growth rate is similar in the setting of 10 robots (Figures 4.10a),

the gap becomes significantly bigger with 20 to 40 robots. The reason for this is that

BeePCo moves in a straight line versus the circular motion of StiCo, which allows an

overall faster spread of the robots. As shown in the heat-maps, BeePCo converges in the

setting of 10 to 30 robots, to a steady state, where the algorithm reaches its maximum

coverage and the robots stop moving. This can be seen in Figures 4.10a- Figures 4.12a,

since the area coverage stops changing, in contrast to the continues changes in StiCo.

Chapter 4. Bee Pheromone Based Coverage 56

100 101 102 103

Time Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
%

 A
re

a
Co

ve
ra

ge

BeePCo(30)
StiCo(30)
maxCo(30)

(a) The average percentage of the total area coverage, shown for each time step of the run (30
Robots).

BeePCo StiCo

0.0

0.2

0.4

0.6

0.8

%
A

v
e
ra

g
e
 C

e
ll

C
o
v
e
ra

g
e

BeePCo(30)

StiCo(30)

(b) Distribution over all grid-cells in the environment, showing how many percent of the total
run time a cell is covered (30 Robots).

Figure 4.12

In high density case of 40 robots, the robots are forced, by the size of the environment,

to have overlapping sensor and transmission areas. Therefore, at least some robots

are moving, this triggers a chain reaction where one moving robot is driving in the

transmission area of a stationary robot, subsequently triggering the moving strategy of

that robot and so on. The continuous motion in BeePCo can be seen from Figure 4.13a.

A summary over four different settings is presented in Figure 4.14, which shows in more

detail how the number of robots increases the rate in which BeePCo’s area coverage

is growing. The rate between the 30 and 40 robot setting stays almost the same, this

indicates subsequently that the growth rate is at its maximum. StiCo’s area coverage

rate stays for most experiments, except for the 10 robots setting, the same. In the

last mentioned setting is the growth of the area coverage a little bit slower, since the

Chapter 4. Bee Pheromone Based Coverage 57

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8
%

 A
re

a
Co

ve
ra

ge

BeePCo(40)
StiCo(40)
maxCo(40)

(a) The average percentage of the total area coverage, shown for each time step of the run (40
Robots).

BeePCo StiCo

0.0

0.2

0.4

0.6

0.8

%
A

v
e
ra

g
e
 C

e
ll

C
o
v
e
ra

g
e

BeePCo(40)

StiCo(40)

(b) Distribution over all grid-cells in the environment, showing how many percent of the total
time a cell is covered (40 Robots).

Figure 4.13

environment is less cluttered, so that a robot takes a longer to reach a position where it

senses pheromone of other robots, this results in a slower spread overall. The difference

between the maximal coverage achieved by BeePCo and StiCo, compared to the maximal

possible coverage MaxCo increases with the number of robots (see Figure 4.14). This

effect occurs because the environment becomes more cluttered and robots are getting

surrounded by other robots, forcing them to choose a movement action, which will

transition them to a state where their sensor areas overlap.

Figures 4.10b - 4.13b illustrates the distribution over the cell coverage, the same data

represented in the heat-maps, in a box-plot format. As described in Subsection 4.4.1 the

area is divided into a fine-grained grid. During the experiment runtime, an evaluation

routine counts the time steps where a certain cell was covered by at least one robot

Chapter 4. Bee Pheromone Based Coverage 58

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

%
 A

re
a

Co
ve

ra
ge

BeePCo(10)
BeePCo(20)
BeePCo(30)
BeePCo(40)
StiCo(10)
StiCo(20)
StiCo(30)
StiCo(40)
maxCo(10)
maxCo(20)
maxCo(30)
maxCo(40)

Figure 4.14: This plot shows the competing percentages of area coverage, using MRSs
with 10, 20, 30 and 40 robots: StiCo and BeePCo

sensor. By dividing this counter, by the total number of time steps, we derive the

percentage of the runtime, a specific cell is covered. In the box-plot format, the box

shows the region where 75% of the data is located, the red-line marks the median and

lines at the top and bottom of the box show the minimal and maximal values of the

data set. Extreme outliers are represented by circles. The upper and lower boundary of

the box are usually known as upper and lower quartile and the difference between those

to values is refereed to as interquartile range.

Figures 4.11b and 4.12b also show that BeePCo converges for 20 and 30 robots

to a steady state where it doesn’t cover the cells evenly, shown by the large difference

between the two quartiles. Figure 4.10b shows that with a robot size of 10, more than

75% of the cells have a run time coverage of around 0%. Figure 4.13b shows again that

BeePCo covers the area more evenly in the 40 robot setting. The difference between the

quantiles is only 20%, in comparison to the 90% of the other settings. StiCo shows in

the configurations of 20, 30 and 40 robots an even coverage per cell, where the difference

between the upper and lower quantile is between 10% and 15%, with an increasing

median proportional to the number of robots, illustrated in Figures 4.11b - 4.13b. In

the setting of 10 robots StiCo is not able to spread across the whole area, also shown

in heat-map Figure 4.6a. This results in a more unevenly covered environment with a

interquartile range of over 30%, see Figure 4.10b.

Chapter 4. Bee Pheromone Based Coverage 59

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

1.0

%
 C

el
l S

ta
nd

ar
d

De
vi

at
io

n

BeePCo
StiCo

Figure 4.15: Standard deviation over all cells, for 10, 20, 30 and 40 robots.

The remaining Figure 4.15 shows additional how evenly the environment is covered,

by illustration the standard deviation of the coverage between the cells. The lower the

standard deviation the more even the environment is covered. As described before is

BeePCo able to maximise the area coverage compared with StiCo, but is not covering the

cells evenly over-time, which causes the higher standard deviation. In order to determine

if the difference between the result is significant, we apply the Mann-Whitney U-Test

and propose the required null hypothesis as follows:

H0: StiCo’s and BeePCo’s cell coverage has the same standard deviation be-

tween the cells.

Table 4.3 shows the result of the test for all four robot configurations. The p-value

resulting from this test, is defined as the probability of the null hypothesis being satisfied.

All results show a significant difference, since the p-values of the the Mann-Whitney U-

test are under significance level α = 0.05 and we can reject the hypothesis.

Chapter 4. Bee Pheromone Based Coverage 60

Number of Robots p-Value H0

10 0.0004 reject H0

20 0.0004 reject H0

30 0.0004 reject H0

40 0.0027 reject H0

Table 4.3: Mann-Whitney U-test regarding the cell coverage standard deviation be-
tween StiCo and BeePCo. A p < 0.05 indicated a significant difference between the

results and rejects the hypothesis.

4.5 Conclusions

In this chapter we are address the research question:

Research Question RQ1: To what extent can we devise appropriate algorithms

for stigmergy-based/bio-inspired multi-robot exploration/coverage, in simulation and

ground-based robots?

We devise the novel bio-inspired coverage algorithm BeePCo, based on the simple com-

munication strategies seen in bees, to address the coverage problem in MRSs. We

examine its coverage performance with the comparable coverage algorithm StiCo. We

show that it is able to reach a high maximal sensor coverage and a fast converging

speed. Since its simple rule based strategy is satisfied after its maximum sensor cover-

age is reached, it will eventually stop moving. This makes BeePCo attractive for blanket

coverage use-cases e.g. in WSNs, but is therefore not suited for continues scanning sce-

narios. Because of its fast converging speed and its high maximal sensor coverage, we

employ it as a foundation for a hybrid-pheromone coverage approach described in the

following Chapter 5.

Chapter 5

Hybrid Bee and Ant Inspired

Coverage

The previous chapter introduced the BeePCo algorithm for coverage and showed its

strengths and weaknesses, compared it to and an ant pheromone based coverage ap-

proach called StiCo. This chapter elaborates over the differences between those algo-

rithms and introduce the hybrid approach HybaCo, which combines the ant- and bee-

pheromone algorithms to improve the performance with respect to converging speed and

uniform sensing of the environment, also known as repetitive- or sweep-coverage. The

remainder of this chapter is structured as follows: Section 5.1 illustrates the differences

between the BeePCo and StiCo approaches. Section 5.2 explains the proposed bee and

ant inspired HybaCo technique. The chapter continues with the experimental setup and

results in Section 5.3. The results are further discussed and generalised in Section 5.4

and the chapter is concluded in Section 5.5.

5.1 Comparison Between StiCo and BeePCo

In order to understand the improvements by the hybrid approach over BeepCo and

StiCo. Section 5.2 discusses the results and behaviours shown in the previous Chapter 4.

Section 5.1.1 provides an overview of the differences between BeePCo and StiCo and

Section 5.1.2 and 5.1.3 explain how these differences influence their performance.

5.1.1 Characteristics Differences Between BeePCo and StiCo

The major differences between BeePCo and StiCo are the communication- and movement

principles each approach relies on. StiCo applies an indirect communication scheme,

where the robots place physical pheromones in the environment to inform their cooper-

ating agents of their recent visited positions. The robots move on a path described by a

circle with a fixed radius. StiCo employs two sensors, one on the right and one on the left

of the robot. If pheromone is detected on the outside of the circle-path, the robot will

switch the rotation direction, e.g. from clockwise to counter-clockwise. If pheromones

61

Chapter 5. Hybrid Bee and Ant Inspired Coverage 62

are detected on the inside of the circle path, the robot will rotate until it doesn’t sense

the pheromones anymore. This behaviour results in spreading of the robots and can be

used in the context of exploration and surveillance. For more detail, see Section 3.4.

In BeePCo, the communication is done in a direct fashion, which means the robots

have a communication link to exchange pheromone messages between neighbouring

robots. Similar to pheromones in a bee-hive, these pheromone-messages are propa-

gated through the swarm to allow for an information exchange, over further distances

than the communication range of a single robot. The propagation can also be classified

as indirect communication. The messages itself can be seen as virtual pheromone and

include a position, relative or global, indicating covered areas in the environment. Its

intensity is decreased with increasing distance and time. Based on this gathered in-

formation, BeePCo is choosing the shortest path/straight line to the closest uncovered

area. Overall the discussed features can be summarised in the following Table 5.1.

Property StiCo BeePCo

communication Indirect (Pheromone) Direct/Indirect (Messages)
movement Circular Vector-based

Table 5.1: Differences between StiCo and BeePCo

5.1.2 StiCo Coverage Performance

The experiments show that StiCo (Section 3.4) takes overall a longer time to converge

to its maximal sensor coverage, mostly due to two main reasons: 1) StiCo moves in

a circular fashion, which increases the path length in comparison to a straight line

movement. 2) StiCo slows down in the beginning of a run, which is due to the additive

pheromone and the initial configuration of the robots. Since the robots are initialised

as a cluster, they start spreading pheromones, which surround the robots in the middle

of the pack (see Figure 5.1). This triggers both line-detection sensors of those robots,

resulting in a continuous switching of the circle direction. These robots are stuck in this

behaviour until pheromones around them are evaporated.

StiCo’s main advantage is that it is able to uniformly cover and sense the environ-

ment. How uniformly the environment is covered depends on the density of robots in

the environment. In settings with a lower number of robots, StiCo converges to a state

where each robot is disjoint from the others and each robot is surveilling an area around

a fixed point in the environment. In the context of StiCo, are two robots disjointed,

when their pheromone trails have no intersection and they are consequently not able to

influence each other.

This maximises the sensor-coverage, but doesn’t allow for a uniformly covered en-

vironment. With an increasing number of robots, the robots are starting to influence

each other more, which introduces frequent avoidances, allowing StiCo to evenly cover

the environment.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 63

(a) Beginning (b) After a few time-steps

Figure 5.1: StiCo problem: Robot surrounded by pheromone.

5.1.3 BeePCo Coverage Performance

The experiments of BeePCo show that it converges quicker to its maximal sensor cov-

erage than StiCo, which is due to the straight line movement compared to the circular

movement of StiCo. BeePCo achieves higher coverage than StiCo, but converges to a

steady state where the robots are not influenced by each other. This effect comes from

BeePCo’s notion to avoid the sensor-range of the other robots to maximise the total

coverage. Since communication and sensor range are the same (in the considered case),

the robots lose their communication links. After BeePCo looses all communication links

it decays the virtual pheromone until it is not affected by it any more.

Compared to StiCo, BeePCo does require a much higher robot density to introduce

a continuous movement, since it tries to reach the before described steady state. This

property is sufficient in a context of blanket coverage, but is not suitable for an even

coverage of the environment.

5.2 HybaCo: Hybrid Bee and Ant Pheromone Coverage

The goal of the Hybrid Bee and Ant Pheromone Coverage (HybaCo) is a simple merge

of the two pheromone-based approaches BeePCo (Section 4) and StiCo (Section 3.4) to

combine their strengths, while overcoming their individual weaknesses. In the previous

Chapter 4, BeePCo showed it converges quickly and is able find configurations to max-

imise the coverage, but it requires communication links to provide a continues sweeping

over the environment. Additional, StiCo is able to provide an even coverage with a lower

robot density, but has a slower converging speed and lower maximal coverage.

Therefore, HybaCo aims to combine best of both worlds by preferring the BeePCo-

principle as long as a robot still “senses” bee-pheromone. Allowing a faster spread in

the beginning and a more calculated avoidance of densely packed areas. As soon as

the bee-pheromone is decayed HybaCo switches to the StiCo-principle and employs its

Chapter 5. Hybrid Bee and Ant Inspired Coverage 64

circular motion and ant-pheromone to enable a more even spread of the robots. If a

robot receives new bee-pheromone messages it will switch back to the BeePCo-principle,

until the virtual pheromone is decayed and so forth. The pseudocode for HybaCo is

shown in Algorithm 10.

Algorithm 10: Hyba-Co Algorithm

loop
if Bee-pheromone present then

Apply BeePCo
else

Apply StiCo
end if

end loop

5.3 Experimental Evaluation

This section evaluates HybaCo in different scenarios. Section 5.3.1 explains the test-

environment and configurations, Section 5.3.2 shows HybaCo’s performance in respect

to coverage, Section 5.3.3 analyses how evenly it is able to cover the environment over

time and Section 5.3.4 illustrates how it utilises the underlying pheromone approaches,

depending on the setting it is in.

5.3.1 Experimental Setup

HybaCo is designed to combine the high coverage and converging speed of BeePCo with

the ability to evenly cover the environment of StiCo. This section analyses to what

extent HybaCo succeeds in this. For a better comparison we evaluate the algorithm

with the same number of robots and in the same environment used for the evaluation

of BeePCo, described in Section 4.4. These parameters can be summarised by a square

environment with a size of 300cm × 300cm and experiments with 10, 20, 30 and 40

robots. The evaluation is done in simulation and the employed simulator structure is

described in Subsection 4.3. The simulated robots are based on the E-Puck robots

and have a transmission- and sensor-range of 25 cm (see Section 4.4.2). We analyse

HybaCo’s maximal coverage ability, converging speed and coverage distribution over

time. The maximal possible sensor coverage is in this section referred to as MaxCo and

is defined as the maximal area all robots combined can sense. The distribution of the

scanned positions over time is visualised by the heat-map representation, introduced in

Section 4.4.1. This representation divides the environment in equally size grid-cells and

applies a gradient color scheme, to each cell, according the percentage of total runtime,

this specific cell is covered. The ligther the color the higher the percentage. To ensure

statistical significance StiCo, BeePCo and HybaCo are each executing 30 runs, with a

runtime of 6 minutes. The initial positions are varied between the runs, but are kept the

same for all algorithms.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 65

100 101 102 103

Time Steps

0.0

0.1

0.2

0.3

0.4

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo(10)

BeePCo(20)

StiCo(10)

StiCo(20)

HybaCo(10)

HybaCo(20)

maxCo(10)

maxCo(20)

Figure 5.2: The percentage of area coverage using BeePCo, StiCo and HybaCo with
10 and 20 robots. The plot illustrate the mean and the error-bars the standard deviation

over 30 runs.

Since BeePCo and StiCo are already examined in Section 4.4, they are mainly used as a

reference in the following experiments. HybaCo uses the same parameters for the virtual

bee pheromone and physical ant pheromone as the BeePCo and StiCo implementations

it is compared with. The configuration of all three algorithms are illustrated in Table 5.2.

For more detail about BeePCo’s parameters, see Section 4.2 and for more detail about

StiCo’s parameter, see Section 4.4.3.

BeePCo StiCo HybaCo

Thresholdhopcount = 10 Pdecay = −0.1 units/s Thresholdhopcount = 10
Thresholdmovement = 0.001 rs = 25 cm Thresholdmovement = 0.001
ThresholdQR = 10, 000 ThresholdQR = 10, 000
TQR = 0.2 sec TQR = 0.2 sec
ht = 0.4 sec ht = 0.4 sec

Pdecay = −0.1 units/s
rs = 25 cm

Table 5.2: BeePCo’s, StiCo’s and HybaCo’s configuration

Chapter 5. Hybrid Bee and Ant Inspired Coverage 66

100 101 102 103

Time Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo(30)

BeePCo(40)

StiCo(30)

StiCo(40)

HybaCo(30)

HybaCo(40)

maxCo(30)

maxCo(40)

Figure 5.3: The percentage of area coverage using BeePCo, StiCo and HybaCo with
10 and 20 robots. The plot illustrate the mean and the error-bars the standard deviation

over 30 runs.

5.3.2 Sensor Coverage

Figure 5.2 and Figure 5.3 show the coverage progression of StiCo, BeePCo and HybaCo

over the duration of a run. The graph shows the mean over all 30 runs and the error-

bars illustrates the standard deviation. In the settings of 10 robots, it can be seen

that HybaCo converges around 10 time-steps quicker than BeePCo, this difference is

about 2 seconds of runtime (see Figure 5.2). The same holds for the setup of 20 and 30

robots, in the remaining setting of 40 robots. BeePCo has an advantage of 2 seconds

over HybaCo, but these differences are insignificantly small and show that HybaCo is

able to match the converging time of BeePCo. The convergence rate, defined as the area

gained per time unit, is in both algorithms almost identical. After a small difference in

the first 10 to 20 seconds, BeePCo’s and HybaCo’s plots show the same slope until they

approach their maximum (Figure 5.2 and Figure 5.3).

With respect to maximum coverage, HybaCo and BeePCo converge to a similar level

of covered area. Both approaches achieve in the settings of 10 and 40 robots a sensor

coverage of 18%, respectively 65%. In the experiments with 20 and 30 robots, BeePCo

has a slight advantage of 0.5% to 1% more coverage than HybaCo. The reasons for

converging to the same coverage level are different for the scenarios of 10 and 40 robots.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 67

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

%
 C

el
l S

ta
nd

ar
d

De
vi

at
io

n BeePCo
StiCo
HybaCo

(a) Standard deviation over the coverage per cell in the settings of 10, 20, 30 and 40 robots for
BeePCo, StiCo and HybaCo.

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

%
A

v
e
ra

g
e
 C

e
ll

C
o
v
e
ra

g
e

BeePCo

StiCo

HybaCo

(b) Distribution over the coverage per cell in the settings of 10, 20, 30 and 40 robots for BeePCo,
StiCo and HybaCo.

Figure 5.4

In the setting of 10 robots, the environment is less densely packed with robots,

allowing BeePCo and HybaCo to find a state where the coverage is maximised and the

robots are not interfering with each other. This results in both cases to approximately

the same of coverage, shown in Figure 5.2.

In the setting of 40 robots it’s exactly the opposite. The robot density is high

and a few robots will always be in communication range of one another. Robots in

communication range propagate virtual pheromone, which triggers BeePCo’s movement

strategy. This movement propagates through the whole swarm, resulting in a continues

motion. Since HybaCo prefers BeePCo’s movement strategy, and BeePCo is generally

Chapter 5. Hybrid Bee and Ant Inspired Coverage 68

active (setting of 40 robots), is has approximately the same overlap as BeePCo with 40

robots (Figure 5.3).

In the cases of 20 and 30 robots, BeePCo is able find a steady state, where the robots

are not interfering with each other, but HybaCo’s continuous motion, a consequence

of ant-pheromone strategy, increases the probability of overlapping sensor areas. This

probability increases with a rising robot density, explaining the small coverage difference,

for 20 and 30 robots, between HybaCo and BeePCo (Figures 5.2 and 5.3).

5.3.3 Distribution Over Time

In terms of distribution over time, HybaCo is able to improve upon the performances

of StiCo and BeePCo. The heat-maps (Figure 5.5) show that it overcomes the steady

states of StiCo and BeePCo in the 10 robot scenario. In the 10 robots setting StiCo and

BeePCo are converging to a state where they patrolling/observing the same positions.

This is shown by the red circles in Figure 5.5a and the white circles in Figure 5.5b. In this

setting HybaCo shows an even distributed coverage over the environment (Figure 5.5c).

This is also illustrated in the box-plot Figure 5.4b and standard deviation shown in Fig-

ure 5.4a, where the interquartile range and the standard deviation are smaller compared

to StiCo’s. The heat-map Figure 5.5c with 10 robots illustrates that HybaCo scans the

environment more evenly, but still has some uncovered areas. Robots in this setting are

able to find areas where they are not influenced by bee or ant pheromones.

Starting with 20 robots HybaCo is able provide an even scan over the whole environ-

ment, while improving on StiCo’s standard deviation about 3% to 5% (Figure 5.4a) and

improving its interquartile range, shown in the box-plot Figure 5.4b, by approximately

5%. With an increasing number of robots HybaCo is able to improve the average count

each cell is covered, while still maintaining the low deviation between the cells counts

(Figure 5.4a). This is also shown in the heat-map visualisation where colouring is getting

brighter proportional to the robot count.

The overall explanation for the HybaCo performance is that by applying the principle

of BeePCo it is able to spread faster in a formation where the coverage is maximised.

After this phase, HybaCo’s bee-pheromones are decayed and it switches to the circular

motion of StiCo. By marking the covered area with the physical ant-pheromone a robot

indirectly informs nearby by robots about its presence. This introduces an additional

separation of the robots and an even spread across the environment. If robots move in

each others communication range, HybaCo applies the linear movement of the BeePCo-

principle to separate the robots faster, and in a more effective manner, compared to

StiCo. This is particularly helpful when a group of robots collides.

One of the main goals of HybaCo is to achieve the even distributed coverage of StiCo,

while improving on the maximal sensor coverage by applying the BeePCo-principle. As

described before, HybaCo shows a slight improvement in regards to standard deviation

between the cells (Figure 5.4a) in all settings and it improved in regards to the maximal

coverage for the setting of 20 to 40 robots. In order to see if the improvements are

Chapter 5. Hybrid Bee and Ant Inspired Coverage 69

significant we apply the Mann-Whitney U-test and compare the cell standard deviation

and the average cell coverage between StiCo and HybaCo. For the former we test the

hypothesis:

H0: StiCo’s and HybaCo’s cell coverage has the same standard deviation be-

tween the cells.

The p-value resulting from this test, is defined as the probability of the null hypothesis

being satisfied. The test shows for all four setting a value p < 0.05 (see Table 5.3), which

shows significant difference between the results and we can reject the hypothesis in all

setting.

Number of Robots p-Value H0

10 0.0004 reject H0

20 0.0341 reject H0

30 0.0011 reject H0

40 0.0015 reject H0

Table 5.3: Mann-Whitney U-test regarding the cell coverage standard deviation be-
tween StiCo and HybaCo. A p < 0.05 indicated a significant difference between the

results and rejects the hypothesis.

In regards to the average cell coverage (Figure 5.4b), we apply the hypothesis:

H0: The average percentage a cell is covered during a run is the same for

HybaCo and StiCo.

As shown in Figure 5.4b are the results significant different for 20 to 40 robots and

are drawn from a similar distribution for the setting of 10 robots. This observation is

also confirmed with the Mann-Whitney U-test, the results of the test are illustrated in

Table 5.4. This results confirms that that HybaCo is able to achieve a higher sensor

coverage than StiCo, in denser robot setting.

Number of Robots p-Value H0

10 0.6588 don’t reject H0

20 0.0104 reject H0

30 0.0004 reject H0

40 0.0004 reject H0

Table 5.4: Mann-Whitney U-test regarding the average cell coverage between StiCo
and HybaCo. A p < 0.05 indicated a significant difference between the results and

rejects the hypothesis.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 70

Coverage per Cell 100%0%

(a) StiCo - 10 Robots (b) BeePCo - 10 Robots (c) HybaCo - 10 Robots

(d) StiCo - 20 Robots (e) BeePCo - 20 Robots (f) HybaCo - 20 Robots

(g) StiCo - 30 Robots (h) BeePCo - 20 Robots (i) HybaCo - 30 Robots

(j) StiCo - 40 Robots (k) BeePCo - 40 Robots (l) HybaCo - 40 Robots

Figure 5.5: The distribution over time, using 10, 20 ,30 and 40 robots. The coverage
is illustrated in a gradient color scheme. A cell is coloured white, if it is covered 100%
of the run time and coloured black for a 0% coverage. The intermediate percentages

are coloured accordingly to the scale at the top of the figure.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 71

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

1.0
%

 A
ct

iv
it

y

Bee-Pheromone

Ant-Pheromone

Figure 5.6: The percentage of the total run-time, the bee- and ant-pheromone algo-
rithms are active.

5.3.4 Ant and Bee Pheromone Usage

HybaCo combines the ant-pheromone technique of StiCo together with the bee-pheromone

technique of BeePCo to surveil the environment in a continuous fashion. The previous

Sections 5.3.2 and 5.3.3 showed that HybaCo is able to match and outperform BeePCo

and StiCo in maximal coverage and distribution over time. This section analyses how

the robot density or number of robots influences the usage of the ant-and bee-pheromone

approaches inside HybaCo.

Figure 5.6 illustrates the total run-time of each approach in HybaCo, with respect

to the number of robots. Figure 5.7 shows the time of operation, of each approach, over

the course of a run. As described in Section 5.2, the pheromone approaches HybaCo

relies on, are mutually. Specifically, the ant-pheromone approach is deactivated while

the bee-pheromone approach is active and vise versa.

The experiments show that HybaCo’s usage of the underlying pheromone approaches

depends on the robot density in the environment, the higher the density, the higher

the total operation-time of the bee-pheromone approach. In the case of 10 robots,

HybaCo uses the bee-pheromone approach around 15% of the total run-time, this number

increases proportional to the number of robots and reaches a maximum of 85% in the

setting of 40 robots (see Figure 5.6).

Figure 5.7 presents typical runs of a robot in regards to different swarm sizes, it shows

which pheromone approach is active at a specific point in time. In the beginning of all

four scenarios (10 - 40 robots) the robots are applying the bee-pheromone principle. This

is because the robots are initialised in a cluster, allowing all robots direct communication

with at least one cooperating robot. After the initial spread, controlled by the bee-

pheromone approach, the robots start switching to the ant-pheromone technique.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 72

0 500 1000 1500 2000
A) Time Steps

Bee

Ant
10 Robots

0 500 1000 1500 2000
B) Time Steps

Bee

Ant
20 Robots

0 500 1000 1500 2000
C) Time Steps

Bee

Ant
30 Robots

0 500 1000 1500 2000
D) Time Steps

Bee

Ant
40 Robots

Figure 5.7: Activation-times of ant- and bee-pheromone principles during a single
run of HybaCo.

An increasing number of robots, or higher robot density, reduces the duration and

frequency the ant-pheromone principle is applied. Where HybaCo is almost fully relying

on the ant-pheromone approach during the 10 robots setting (Figure 5.7a), it employs

it short and sparsely in the 40 robots setting (Figure 5.7d).

This is due to the high density, which forces the robots closer together and therefore

increasing the probability to activate of the internal bee-pheromone approach. If the

environment is less densely packed, the robots are able to keep a safe distance between

each other, by only using the ant-pheromone approach.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 73

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Half-life Period

0.100

0.125

0.150

0.175

0.200

%
 C

el
l S

ta
nd

ar
d

De
vi

at
io

n HybaCo (10)
HybaCo (20)
HybaCo (30)
HybaCo (40)

Figure 5.8: Illustrates the different standard deviations, between the cells, for different
settings of HybaCo’s half-life period parameter ht.

5.3.5 Pheromone-Decay Parameter Sensitivity and Tuning

The previous Sections 5.3.2 and 5.3.3 showed that HybaCo is able to outperform StiCo,

the ant-pheromone principle it’s based on. This is accomplished by additionally util-

ising the bee-pheromone communication technique BeePCo, the whole combination of

both techniques is described in Section 5.2 in more detail. As described in Section 5.2,

relies the BeePCo-principle, used in HybaCo, on different parameters to tune the al-

gorithms overall performance (Section 4.2). This section will analyse the influence of

the pheromone decay/half-time parameter ht, since its the most important parameter,

because it determines the bee-pheromone algorithms duration, activated by the virtual

pheromone. The half-time period of the pheromone is defined as the duration required

to evaporate 50% of the current dosage.

Since the pheromones dosage decreases expectationally (Equation 4.2, Section 4.2)

it can never reach exactly 0%. Because of this reason we define a the threshold value

Thresholdmovement, this threshold determines the percentage, which is consider as neg-

ligible. During all experiments we keep the threshold constant at Thresholdmovement =

0.001 and change only the half-time period. The same result can be achieved by keeping

the rate constant and changing the threshold, as long as the total evaporation time is

kept the same. We define the evaporation time, as the duration to decay the pheromone

from a 100% dosage to a dosage below the threshold Thresholdmovement. The evapora-

tion time can be calculated by solving the Equation 4.2, introduced in Section 4.2, for

∆t:

∆t = ht
ln(Thresholdmovement)

ln(0.5)
(5.1)

In order to analyse how the virtual pheromone half-time/decay rate influences the

algorithm’s performance and how sensitive the parameter is, we employ scatter plots

for different fitness functions of the algorithm. In order to illustrate how even the

environment is covered, we use the standard deviation of the coverage between the cells

Chapter 5. Hybrid Bee and Ant Inspired Coverage 74

and to compare the maximal area the robots are covering, we compare the average sensor

coverage over the duration of a run.

The experiments are done in the previous settings of 10, 20, 30 and 40 robots, and

we examine their result for the half-time (ht) settings of: 0, 0.4, 0.8, 1.6 and 2.0 seconds.

The range and step-size between the settings are sensibly chosen, in order to examine a

significant increase in the parameter setting, since smaller step-sizes show no or minimal

effect. Preliminary analysis showed that the performance is linear decreasing after the

decay-rate exceeds a certain limit, which is the reason for the limited parameter range.

The effect can be seen in Figures 5.8 and 5.9 and is further discussed in the following

paragraphs.

All setting combinations are run 50 times in a 3m × 3m environment described in

Section 4.4. A half-time period of 0 means that the virtual bee-pheromone evaporates

directly and is not detectable, HybaCo is relying in this case exclusively on the underlying

ant-pheromone principle (StiCo). This parameter setting is meant as a performance

base-line, since HybaCo uses the additional BeePCo algorithm to improve on StiCo’s

performance. The 2 seconds half-time period on the other side of the spectrum, means

that the pheromone dosage halves every 2 seconds and lingers therefore much longer in

the system.

Figure 5.8 and Table 5.5 illustrate the different performances with regards to the

standard deviation of the coverage between the cells (Section 4.4), the smaller the stan-

dard deviation the more equally the environment is covered. Starting with a half-time

period of 0 seconds, the deviation decreases with increasing parameter value until a cer-

tain value is passed, the deviation is linearly increasing after this point. The deviation

minima is sightly dependent on the robot density. For the denser setting of 20 - 40

robots, is the deviation increasing after parameter value of 0.4 seconds and for the 10

robots setting, it increases after 0.8 seconds.

Number of Robots
10 20 30 40

H
a
lf

-l
if

e
P

e
ri

o
d

e

0.0 sec 0.1484 0.1075 0.0921 0.0853
0.4 sec 0.1212 0.0960 0.0931 0.0831
0.8 sec 0.0969 0.1031 0.1109 0.1209
1.6 sec 0.1191 0.1576 0.1801 0.1821
2.0 sec 0.1329 0.1673 0.1989 0.2071

Table 5.5: Illustrates the different standard deviations, between the cells, for different
settings of HybaCo’s half-life period parameter ht.

A similar effect can be seen in respect to the coverage in Figure 5.9. With a half-life

time of 0 seconds, the robots take longer to converge to the maximum coverage and it

converges to the lowest coverage compared to all other settings, with a half-time value of

0.4 seconds, HybaCo converges quicker and reaches a higher coverage. For ht > 0.4 the

Chapter 5. Hybrid Bee and Ant Inspired Coverage 75

maximal sensor coverage becomes less stable and shows occasionally drops, this effect

increases proportional to the ht value.

The reason for the improvement from ht = 0 to ht = 0.4 can be explained by

the fact the a half-time period time of 0 means that the virtual pheromone evaporates

immediately and is therefore not considered for the movement of HybaCo, it basically

operates like StiCo. In the ht = 0.4 setting, HybaCo uses the additional information

of the pheromone to spread quicker and more efficiently, as described in Sections 5.3.2

and 5.3.3. The linear degrease in performance for the settings ht > 0.4 is caused by

the fact that the pheromone consist longer in the virtual view of the robot and the

robot considers the area of the pheromone as covered, when it didn’t receive an update

of the robot who placed it. This means there is more pheromone to avoid, this forces

more robots to the same pheromone free spaces, which results in less equally covered

environment and more overlap of the sensor areas. If ht is smaller, the virtual pheromone

evaporates quicker and the robots will explore these spaces again.

The analysis shows that the ht parameter influences HybaCo’s performance in a

stable and predicable fashion. In regards to the tuning, we can use the standard deviation

as a fitness function and increase the ht parameter in a gradient decent fashion until we

reach the minimum.

5.4 Discussion

Generally speaking HybaCo is able to match and outperform the two pheromone-based

approaches StiCo and BeePCo it relies on. The performance itself is strongly influenced

by the number of robots in respect to the size of the environment. Additionally, the

performance is also effected by the communication range of the underlying pheromone

principles, since both approaches trigger an avoidance behaviour if robots are in each

others transmission ranges.

For the bee-pheromone principle (BeePCo) is the transmission range limited by the

maximal range of the wireless communication device e.g. blue-tooth, WiFi and in our

experiments infra-red transmission (25 cm). The underlying ant-pheromone principle

(StiCo) is communicating indirectly via pheromone trails. Since StiCo is moving in

circles, the communication range is the diameter of the circle.

Both algorithms aim to disjoint their transmission areas, to maximise the total sensed

area. Since the sensor- and transmission range of the robots, in the considered test-

scenarios, are the same.

In order to generalise the result of the experiments we define the robot density as the

combined transmission area of all robots, divided by the two dimensional area size of

the environment. For x robots with with a communication range of r, in a environment

of size n×m this can be formalised as:

density =
xr2π

nm
(5.2)

Chapter 5. Hybrid Bee and Ant Inspired Coverage 76

100 101 102 103

Time Steps

0.0

0.2

%
 A

re
a

Co
ve

ra
ge

HybaCo (10), ht = 0
HybaCo (10), ht = 0.4
HybaCo (10), ht = 0.8
HybaCo (10), ht = 1.6
HybaCo (10), ht = 2.0

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

%
 A

re
a

Co
ve

ra
ge

HybaCo (20), ht = 0
HybaCo (20), ht = 0.4
HybaCo (20), ht = 0.8
HybaCo (20), ht = 1.6
HybaCo (20), ht = 2.0

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

%
 A

re
a

Co
ve

ra
ge

HybaCo (30), ht = 0
HybaCo (30), ht = 0.4
HybaCo (30), ht = 0.8
HybaCo (30), ht = 1.6
HybaCo (30), ht = 2.0

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a

Co
ve

ra
ge

HybaCo (40), ht = 0
HybaCo (40), ht = 0.4
HybaCo (40), ht = 0.8
HybaCo (40), ht = 1.6
HybaCo (40), ht = 2.0

Figure 5.9: Illustrates HybaCo’s sensor coverage performance for 10, 20, 30 and
40 robots over a run, with respect to different settings of HybaCo’s half-life period

parameter ht.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 77

The experiments show that the initial rate, in which the algorithm gains coverage,

reaches its maximum at 20 robots. This effect is caused by the number of robots and

not by the environment size. Since a higher robot count increases the velocity in which

the BeePCo principle avoids the virtual pheromone, the graphs show that this velocity

reaches its maximum at a configuration of 20 robots (Figures 5.2 and 5.3).

A property affected by robot density, is the difference between the maximal achieved

coverage and the maximal potential coverage. The experiments with 10 robots (21%

density) show a maximal coverage of 2% under the potential coverage, where a density

of 85% (40 robots) shows a difference of around 13%. This is because, a lower density

gives the robots more options to avoid each other, where a denser environment forces the

robots to move towards walls or other robots, which reduces the overall sensor coverage

(Figures 5.2 and 5.3).

But this has also a positive effect on HybaCo, because it introduces more movement

into the swarm, leading to a full coverage of the environment. Starting with a robot

density of 40% (20 robots), it is able achieve uniform coverage, where each cell of the

environment is covered for a similar duration. Higher robot densities than 40% affect the

frequency a cell is scanned, but the deviation for the cell-scan-duration stays between

5% to 8% (Figure 5.4a).

This means HybaCo is able to continuously scan/sweep the environment if the density

is over 40%. This is around 10% lower than StiCo, which required 30 robots to achieve

even coverage. Lower densities than 40% are therefore sufficient, if a full coverage is not

necessary and the main goal is the maximisation of the total sensor area.

5.5 Conclusions

This chapter addresses research question RQ1 and RQ2:

Research Question RQ1: To what extent can we devise appropriate algorithms

for stigmergy-based/bio-inspired multi-robot exploration/coverage, in simulation and

ground-based robots?

Research Question RQ2: What are the advantages of direct and indirect communi-

cation and to what extent can they be combined?

We compare BeePCo’s direct communication with StiCo’s indirect communication and

analyse their differences in maximal sensor coverage and distribution of their coverage

in Section 5.1. We show that StiCo’s communication principle incentivises the robots

to evenly spread across the environment, but doesn’t use the sensor coverage to its full

potential and shows inefficiency spreading behaviour in clustered scenarios. BeePCo is

able to provide a fast spread and high maximal coverage, but is not able to cover the

environment evenly.

Chapter 5. Hybrid Bee and Ant Inspired Coverage 78

We introduce the hybrid bee and ant-pheromone based coverage approach HybaCo with

the aim to combine the strengths of the underlying principles StiCo and BeePCo in

Section 5.2.

The experiments in Section 5.3, show that HybaCo is able to match the convergence

speed and sensor coverage of BeePCo, while outperforming the well-distributed coverage

over time of StiCo. Additionally we show how the number of robots affects the usage of

the underlying pheromone principles and the performance overall. Finally, Section 5.4

discusses how the results can be generalised in respect of the robot properties and

environment size.

Chapter 6

Insect-Inspired Multi-Robot

Coverage in Complex

Environments

The previous Chapters 4 and 5 introduced and evaluated the pheromone based coverage

approaches BeePCo and HybaCo. In order to investigate the general behaviour with

respect to swarm size, the experiments were conducted in a simplistic square arena.

This chapter extends these experiments and examines the stability and robustness of

BeePCo and HybaCo in more complex environments. Section 6.1 describes the em-

ployed environments and their properties. Section 6.2 shows the experimental setup and

results. The results are further discussed in Section 6.3 and the chapter is concluded in

Section 6.4.

6.1 Environments

The chosen environments illustrated in Figure 6.1 are designed to analyse to what extent

the algorithms performances are effected by the shape of the environment. Figure 6.1a

shows the basic environment used in the previous Chapters 4 and 5 with a size of

300 cm × 300 cm without any obstacles, it functions as a benchmark in the following

experiments. The robots start positions are in all environments randomly initialised in

a center square of the size of 50 cm × 50 cm, illustrated by the black dashed lines in

Figure 6.1. The coverable area, is defined as the area that the robot sensors are able

to cover. Meaning, the total area of the environment minus the area of all obstacles

combined. To make the result between the environment more comparable we keep the

coverable area constant for all environments at 90.000 cm2 (area without obstacles).

79

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 80

(a) without obstacles (b) 4 axis symmetric

(c) U-shapes (d) Floor-plan

Figure 6.1: The four environments used in the experiments. The red lines show the
symmetry axes of the environments and the black dash-lines illustrate the square the

robots are initialised in.

Table 6.1 illustrates the different environments, with their total area, the combined area

of the obstacles and the area coverable by the sensors.

Environment Total Area Obstacles Area Coverable Area

Without obstacles 90 000 cm2 0 cm2 90 000 cm2

U-shapes 91 500 cm2 1500 cm2 90 000 cm2

Floor-plan 92 500 cm2 2500 cm2 90 000 cm2

4-axis symmetric 95 000 cm2 5000 cm2 90 000 cm2

Table 6.1: Environment areas

The second environment (Figure 6.1b) has mirror symmetries along the horizontal, ver-

tical and the two diagonal axes, allowing the robots the same space and obstacle config-

uration in each octant of the environment. The symmetry axes are shown as red lines

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 81

in Figure 6.1. The obstacles are walls and pillars surrounding the initial starting posi-

tions of the robots. The walls and pillars are configured in a way that they allow small

gaps to the outer realm of the environment. The environment is designed to analyse to

what extent small gateways influence the even coverage of the complete environment.

The symmetry of the environment makes each path through the gaps between the ob-

stacle equally attractive. During this chapter we refer to this environment as “4-axes

symmetric environment”.

The third environment (Figure 6.1c) has symmetries across the horizontal and the

vertical axes. The obstacles are u-shaped walls placed at the top and the bottom of the

environment. The walls are rotated in a way that parts of the environment are hidden

from the robots in their initial positions. The purpose of this configuration is to analyse

whether the algorithms are able find the hidden space, or if they leave undiscovered

gaps. We refer to this environment as “U-shapes environment”.

The final environment seen in Figure 6.1d represents a floor plan, with two equally

sized rooms at the top and one long room at the bottom. This environment shows

how separated areas and an asymmetric environment effect the even coverage of the

algorithms.

6.2 Experimental Evaluation

This section evaluates BeePCo’s, StiCo’s and HybaCo’s performances in the environ-

ments described in Section 6.1. Section 6.2.1 explains the test-environment and configu-

rations, Section 6.2.2 shows the performances with respect to coverage and Section 6.2.3

analyses how evenly the environments are covered over time.

6.2.1 Experimental Setup

In order to investigate to what extent the shape of the environment influences BeePCo’s

and HybaCo’s performances, we maintain the parameters and configurations employed in

the previous experiments (Sections 4.4 and 5.3). This includes the number of robots (10,

20, 30 and 40), the coverable area of 90.000 cm2 (Section 6.1) and the simulated robots.

The robots are based on the micro robots named E-Pucks with a communication and

sensor range of 25 cm (see Section 4.4.2). E-Pucks use infra-red emitters and receivers for

communication. Since this technology uses light for communication, robots are not able

to communicate through walls or other non-transparent obstacles. The evaluation is done

in simulation and employs the three tier simulation structure described in Subsection 4.3.

We analyse HybaCo’s and BeePCo’s maximal coverage, convergence speed and coverage

distribution over time in relation to the different environments. Since HybaCo is based

on StiCo’s and BeePCo’s pheromone principles (Section 3.4), we additionally employ

StiCo to analyse the performance differences between HybaCo and the algorithms it is

based on.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 82

To ensure statistical significance all algorithms and environments combinations are

repeated 30 times with a runtime of 6 minutes.

Deploying three algorithms, four environments and four different group sizes we con-

sider 64 different experimental settings. To reduce the number and the redundancy

in plots in this section, we show the major influences of the environments on a rep-

resentative subset (Section 6.2.2 and 6.2.3). The complete set of plots can be seen in

Appendix A. In order to make the results comparable to previous experiments, we ap-

ply the same parameters for the virtual bee pheromone and physical ant pheromone

approaches discussed in Sections 4.4 and 5.3. The parameters of the three algorithms

are illustrated in Table 6.2:

BeePCo StiCo HybaCo

Thresholdhopcount = 10 Pdecay = −0.1 units/s Thresholdhopcount = 10
Thresholdmovement = 0.001 rs = 25 cm Thresholdmovement = 0.001
ThresholdQR = 10, 000 ThresholdQR = 10, 000
TQR = 0.2 sec TQR = 0.2 sec
ht = 0.4 sec ht = 0.4 sec

Pdecay = −0.1 units/s
rs = 25 cm

Table 6.2: Algorithm parameters

6.2.2 Sensor Coverage

Sensor coverage is defined as the combined area, a group of robots is able to observe.

This section analysis how obstacles in the environment influence the performance of

BeePCo, HybaCo and StiCo.

Comparing BeePCo and HybaCo, it can be seen, that both algorithms achieve a sim-

ilar performance in the obstacle related environments (see Figure 6.3). A comparison

between the environments shows that BeePCo’s and HybaCo’s coverage is not signifi-

cantly affected by obstacles in the environment (see Figure 6.2). The coverage decreases

around 1%−4%, with the highest drop in the environment with the four symmetry axes

(Figure 6.1b). This is due to two reasons: 1) The combined area of the obstacles is the

highest (Table 6.1) and 2) the obstacles are close to the border of the environment. The

former reason increases the probability of a collision with an obstacle and the latter com-

plicates the avoidance of other robots in the outer realm. These factors force robots in

positions where the sensor areas between robots overlap, or the sensor area is restricted

by an obstacle. The obstacles in the other two environments (Figures 6.1c and 6.1d) are

wider spread, resulting in a smaller drop of 1%− 3%. StiCo is affected in the same way

with a maximal drop of around 2% − 6% depending on the environment (Figure 6.2).

Figure 6.2 and Figure 6.3 show additionally that the time it takes for the algorithms

to converge depends on the environment shape. BeePCo and HybaCo have a similar

converging time for the same environments (Figure 6.3), but the time differs between

the environments (Figure 6.2). All three algorithms experience the highest increase in

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 83

converging time, in the floor-shape environment (Figure 6.1d) and show a similar reduc-

tion, of the coverage gain, in the two symmetric environments (Figures 6.1b and 6.1c).

The cause of the increase in time is further discussed in Section 6.3.

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0
%

 A
re

a
 C

o
v
e
ra

g
e

StiCo (40) - U-shapes

StiCo (40) - w/o obstacles

StiCo (40) - 4-axis symmetry

StiCo (40) - office-shape

(a) StiCo

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (40) - U-shapes

BeePCo (40) - w/o obstacles

BeePCo (40) - 4-axis symmetry

BeePCo (40) - office-shape

(b) BeePCo

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

HybaCo (40) - U-shapes

HybaCo (40) - w/o obstacles

HybaCo (40) - 4-axis symmetry

HybaCo (40) - office-shape

(c) HybaCo

Figure 6.2: Compares the achieved area coverage between the environments, using
40 robots.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 84

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0
%

 A
re

a
 C

o
v
e
ra

g
e

BeePCo (40) - U-shapes

StiCo (40) - U-shapes

HybaCo (40) - U-shapes

(a) U-shapes

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (40) - 4-axis symmetry

StiCo (40) - 4-axis symmetry

HybaCo (40) - 4-axis symmetry

(b) 4-axis symmetric

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (40) - office-shape

StiCo (40) - office-shape

HybaCo (40) - office-shape

(c) floor-plan

Figure 6.3: Compares the achieved area coverage between BeePCo, HybaCo and
StiCo, using 40 robots.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 85

6.2.3 Distribution Over Time

The distribution over time describes how uniform the environment is covered, over the

duration of a run. We employ the technique explained in Section 4.4.1 to calculate

the distribution, it divides the environment in a fine grid and measures the time-steps

a certain cell is covered by a sensor. Figures 6.4 and 6.5 visualise these distributions

as heat-maps. The cell-coverage is presented in a gradient color-scheme, which ranges

from black (0% coverage) to white (100% coverage). Additionally, Figure 6.6 and 6.7

illustrates standard deviation of the coverage count over all the cells.

The experiments show that BeePCo’s distribution is marginally affected by obstacles

in the environment and matches the performance discovered in the empty environment.

For a robot count of 10− 30 robots it converges to a state where the robots eventually

are not influenced by the virtual pheromone and the regions the robots surveil are

disjointed. This effect is shown by the white circles in the heat-map Figures 6.4b, 6.4e,

6.4h and 6.4k. This maximises the sensor coverage, but doesn’t allow for an evenly

covered environment, shown by the high standard deviation in Figures 6.6 and 6.7b. In

the higher robots density setting of 40 robots BeePCo is not able to find a configuration

where all robots are disjointed (Figures 6.5b, 6.5e, 6.5h and 6.5k). This results in a

continues movement propagating through the swarm. The behaviour occurs in all four

environments, illustrated in the heat-map Figures 6.5b, 6.5e, 6.5h and 6.5k. Through this

movement is BeePCo able to cover the environment more evenly, reducing the standard

deviation between the cell counts (Figure 6.7b). The deviation between the environments

is marginally higher in environments with obstacles, compared to deviation archived in

the empty environment (Figure 6.7b). This is based on the fact that the robots are

not able to communicate or move through obstacles, which consequently inhibits the

pheromone propagation.

StiCo’s and HybaCo’s distributions behave similarly with respect to the environ-

ments. In the symmetric environments (Figures 6.1b and 6.1c) StiCo and HybaCo

are able to match the standard deviation achieved in the empty environment, see Fig-

ures 6.7a and 6.7c. In the floor-plan environment the deviation is for both algorithms

higher and certain parts of the environment are more frequently visited than others.

This is caused by the asymmetric shape of the environment, where certain regions are

easier accessible. This can be seen in the heat-map Figure 6.5l, where HybaCo has a

higher visit count at the top part, compared to the bottom part of the environment. The

floor environment (Figure 6.1d) has two entries at the top and only one at the bottom,

StiCo and HybaCo are therefore more likely to enter the top region first. After this

region is fully covered the pheromone, of both technique, prevents the remaining robots

from entering and pushes them to uncovered space until the complete environment is

covered. These effects are further discussed in Section 6.3.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 86

Coverage per Cell 100%0%

(a) StiCo - Environment
without obstacles

(b) BeePCo - Environment
without obstacles

(c) HybaCo - Environment
without obstacles

(d) StiCo - U-shape environ-
ment

(e) BeePCo - U-shape envi-
ronment

(f) HybaCo - U-shape envi-
ronment

(g) StiCo - 4-axes symmetric
environment

(h) BeePCo - 4-axes symmet-
ric environment

(i) HybaCo - 4-axes symmet-
ric environment

(j) StiCo - floor-plan
environment

(k) BeePCo - floor-plan envi-
ronment

(l) HybaCo - floor-plan envi-
ronment

Figure 6.4: The distribution over time, in the different arenas, using 20 robots. The
coverage is illustrated in a gradient color scheme. A cell is coloured white, if it is
covered 100% of the run time and coloured black for a 0% coverage. The intermediate

percentages are coloured accordingly to the scale at the top of the figure.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 87

Coverage per Cell 100%0%

(a) StiCo - Environment
without obstacles

(b) BeePCo - Environment
without obstacles

(c) HybaCo - Environment
without obstacles

(d) StiCo - U-shape environ-
ment

(e) BeePCo - U-shape envi-
ronment

(f) HybaCo - U-shape envi-
ronment

(g) StiCo - 4-axes symmetric
environment

(h) BeePCo - 4-axes symmet-
ric environment

(i) HybaCo - 4-axes symmet-
ric environment

(j) StiCo - floor-plan
environment

(k) BeePCo - floor-plan envi-
ronment

(l) HybaCo - floor-plan envi-
ronment

Figure 6.5: The distribution over time, in the different arenas, using 40 robots. The
coverage is illustrated in a gradient color scheme. A cell is coloured white, if it is
covered 100% of the run time and coloured black for a 0% coverage. The intermediate

percentages are coloured accordingly to the scale at the top of the figure.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 88

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

1.0
%

 C
el

l S
ta

nd
ar

d
De

vi
at

io
n BeePCo - U-shapes

HybaCo - U-shapes
StiCo - U-shapes

(a) U-shapes Environment

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

1.0

%
 C

el
l S

ta
nd

ar
d

De
vi

at
io

n BeePCo - 4-axis symmetry
HybaCo - 4-axis symmetry
StiCo - 4-axis symmetry

(b) 4-axes symmetry Environment

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

1.0

%
 C

el
l S

ta
nd

ar
d

De
vi

at
io

n BeePCo - floor-plan
HybaCo - floor-plan
StiCo - floor-plan

(c) Floor-plan Environment

Figure 6.6: Compares the standard deviation over all cells, in order to show how
evenly the area is covered by BeePCo, StiCo and HybaCo with respect to a specific

environment.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 89

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

1.0

%
Ce

ll
St

an
da

rd
 D

ev
ia

tio
n

StiCo - floor-plan
StiCo - 4-axis symmetry
StiCo - w/o obstacles
StiCo - U-shapes

(a) StiCo

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

1.0

%
Ce

ll
St

an
da

rd
 D

ev
ia

tio
n

BeePCo - floor-plan
BeePCo - 4-axis symmetry
BeePCo - w/o obstacles
BeePCo - U-shapes

(b) BeePCo

10 20 30 40
Number of Robots

0.0

0.2

0.4

0.6

0.8

1.0

%
Ce

ll
St

an
da

rd
 D

ev
ia

tio
n

HybaCo - floor-plan
HybaCo - 4-axis symmetry
HybaCo - w/o obstacles
HybaCo - U-shapes

(c) HybaCo

Figure 6.7: Compares standard deviation over all cells and shows how evenly each
environment is covered, with respect to a specific pheromone coverage approach.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 90

Algorithms
BeePCo StiCo HybaCo

#Robots 10 20 30 40 10 20 30 40 10 20 30 40

E
n
v
ir

o
n

m
e
n
t w/o obstacles 19.7% 37.9% 54.3% 67.9% 20.2% 35.8% 48.2% 59.2% 20.4% 38.2% 53.6% 66.8%

4-axis sym. 18.9% 35.5% 50.6% 63.3% 18.1% 32.1% 44.2% 52.6% 18.9% 35.4% 49.5% 62.7%

U-shapes 18.7% 36.6% 52.6% 66.0% 19.6% 34.4% 46.3% 56.4% 19.8% 37.0% 52.2% 64.2%

Floor-shape 18.8% 36.4% 51.3% 65.7% 19.0% 34.9% 47.0% 55.8% 19.8% 37.3% 51.9% 63.9%

Table 6.3: Maximal Sensor Coverage

6.3 Discussion

As the experiments in Section 6.2 show, the maximal coverage of all three algorithms

marginally is affected by the environments. Table 6.3 illustrates the maximal achieved

sensor coverage with respect to the number of robots and the environment. It can be

seen that all algorithms have the highest drop in the 4-axes symmetric environment.

This is due to its high obstacle area, symmetry and its narrow areas at the outer realm

of the environment (Figure 6.1b). Table 6.1 illustrates the different environments, with

their total area, the combined area of the obstacles and the area coverable by the sensors.

Through the high obstacle area and symmetry the likelihood for encountering an obstacle

is in every part of the environment very likely. Obstacles can block or restrict the sensors,

which leads to a reduction of the sensible area.

Additionally, the narrow pathways are at the outer region of the environment re-

stricting the movement of the robots, which can result in a collision with other robots.

These effects are proportionally increased by the number of robots, see Table 6.3. Each

additional robot increases the chance of colliding with the environment or an overlap of

sensed areas. For instance HybaCo’s coverage is reduces by 0.5% − 1.5% by 10 robots,

0.9%− 2.8% by 20 robots, 1.4%− 4.1% by 30 robots and 2.9%− 4.8% by 40 robots.

This shows that StiCo, BeePCo and HybaCo coverage performances are robust but

are reduced by an increasing robot density and obstacle area.

Figure 6.7 and the Table 6.4 show how the convergence time of StiCo, HybaCo and

BeePCo are influenced by the environment. The table represents time as a percentage

of the total runtime (6 minutes) and shows the duration, required by the algorithms,

to converge to a stable coverage state. BeePCo and HybaCo converging times are sim-

ilarly influenced by the environment and rise with the number of robots. BeePCo’s

and HybaCo’s time increases by 1%− 3% for the symmetric environments (Figures 6.1b

and 6.1c) and by around 1% − 5% in the floor-plan environment. The slow down can

be explained by the fact that obstacles restrict the action space of near by robots and

block their initially intended path. In the case of the floor-shape environment walls are

positioned close to the initial position of the robots, this means the robots are not able

to spread far apart before they encounter the obstacle. In such a dense group formation

the movement is additionally blocked by other robots, which are responsible for the

further increase in the convergence time.

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 91

Algorithms
BeePCo StiCo HybaCo

#Robots 10 20 30 40 10 20 30 40 10 20 30 40
E

n
v
ir

o
n

m
e
n
t w/o obstacles 4% 4% 6% 4% 8% 8% 10% 12% 3% 4% 4% 4%

4-axis symmetry 3% 4% 6% 7% 8% 8% 13% 18% 3% 4% 5% 6%

U-shapes 3% 5% 6% 7% 9% 9% 13% 18% 4% 5% 5% 6%

Floor-shape 4% 6% 7% 9% 14% 19% 27% 33% 4% 6% 8% 8%

Table 6.4: Percentage of total run-time required to converge to a stable coverage
state.

StiCo suffers from the same effects as BeePCo and HybaCo, but it experiences a

higher increase in time, especially for the floor shaped environment (Table 6.4 and Fig-

ure 6.7). This can be explained by the problem described in Section 5.1, where robots in

StiCo are continuously switching between rotation directions when they are surrounded

by pheromone. Robots in this situation are not able to make a valuable movement deci-

sion until the pheromone has evaporated. The probability of these situations increases

in confined spaces with a high robot density, which explains the results in the floor-shape

environment (Table 6.4).

Overall it can be concluded that BeePCo’s, HybaCo’s and StiCo’s convergence times

are influenced by obstacles in the environment, and increase proportionally to the num-

ber of robots. By applying BeePCo’s bee-pheromone technique HybaCo is able to im-

prove the converging time of its underlying technique StiCo.

For StiCo and HybaCo the distribution over time depends on the structure of the en-

vironment. As shown in Section 6.2 and summarised in Table 6.5, both algorithms

are able to provide a similar cell coverage for all symmetric environments (Figure 6.1b

and 6.1c), including the empty environment (Figure 6.1a). In the remaining floor shaped

environment the deviation for StiCo is between 2.0%− 3.6%, and for HybaCo between

2.0%− 3.6%, higher than the deviation achieved in the empty environment. This is be-

cause certain parts of this environment are easier accessible than others. Since HybaCo

and StiCo spread their robots equally in all directions, they will fill the open-parts of

the environment first. This continues until the required amount of robots, cover these

regions. By avoiding pheromones from covered areas, HybaCo and StiCo will eventually

fill in the less accessible regions in the environment. This can be seen in the heat-map

of Figure 6.3c, where certain parts of the environment are presented in a lighter colour

than others. This means, that these regions were discovered first and are therefore cov-

ered for a longer time period. The heat-map (Figure 6.5l) and the maximal coverage

(Table 6.3) show that HybaCo and StiCo will eventually cover a similar amount of area

in each environment type, which means the deviation will decrease when the run-time

increases.

The experiments in Section 6.2 show that BeePCo has two different behaviours, de-

pending on the number of robots (Figure 6.7b). It converges, in a setting of 10, 20 and 30

robots, to a disjointed state where the robots stop moving and are not influencing each

Chapter 6. Insect-Inspired Multi-Robot Coverage in Complex Environments 92

Algorithms
BeePCo StiCo HybaCo

#Robots 10 20 30 40 10 20 30 40 10 20 30 40

E
n
v
ir

o
n

m
e
n
t w/o obstacles 38.7% 46.9% 44.5% 23.5% 12.9% 8.5% 7.3% 7.4% 9.8% 7.7% 7.2% 6.4%

4-axis symmetry 38.9% 44.7% 42.5% 25.4% 11.4% 8.7% 8.3% 7.0% 8.7% 7.8% 7.2% 6.7%

U-shapes 38.4% 45.6% 43.1% 25.8% 11.8% 8.5% 8.4% 8.1% 10.0% 8.1% 7.8% 6.6%

Floor-shape 38.2% 45.1% 43.0% 24.8% 11.9% 10.5% 10.9% 9.7% 11.5% 10.3% 10.1% 10.9%

Table 6.5: Standard Deviation

other. The heat-map Figure 6.4k shows that BeePCo also covers the more accessible

spaces first, since the majority of robots are positioned in the top part of the environ-

ment, instead of the more hidden part at the bottom of the environment (Figure 6.1d).

Table 6.5 illustrates that BeePCo’s deviation for the coverage between the cells, in en-

vironments with obstacle is slightly lower, compared to the empty environment. This is

because the wall avoidance introduces additional movement, which spreads the robots

further across the environment.

In the setting with 40 robots all environments are densely packed and BeePCo is

not able to disjoint all robots, which introduces a continuous motion. In this setting the

robots are able to uniformly cover the environment. The deviation between the cells,

for the environments with obstacles is marginally higher than without. This has two

reasons: 1) BeePCo fills open spaces first and 2) it is not able to communicate through

walls which reduces the pheromone propagation and avoidance.

Overall, we can say that all algorithms are able to maintain their even coverage in

open and symmetric environments. In asymmetric environments BeePCo, HybaCo and

StiCo cover the easier accessible parts of the environment first. If the number of robots

is sufficient for the size of the environment, all algorithms will eventually cover the full

environment and the deviation for the coverage between the cells will decrease when the

run-time increases.

6.4 Conclusions

This chapter extends the initial experiments for BeePCo and HybaCo in Chapter 4

and 5 and analyses their performance in more complex environments, in order to address

research question RQ3:

Research Question RQ3: Given algorithms derived from RQ1 and RQ2, to what

extent does the environment shape and size affect their performance?

Section 6.1 introduces a selected set of test environments with different shape and sym-

metry properties. Section 6.2 shows that the pheromone based approaches are able to

maintain their sensor coverage, and how their distribution and convergence times de-

pends on structure of the environment. Additionally, the experiments show that HybaCo

is able to maintain the maximal coverage of BeePCo while matching the distribution

over time of StiCo.

Chapter 7

Distance-based Multi-robot

Coordination on Pocket Drones

The previous proposed algorithms BeePCo and HybaCo (Chapters 4 and 5) focused on

ground-based robots and are done in simulation, since certain aspects for instance arti-

ficial pheromones (HybaCo) are currently difficult to implement in a real life scenario.

Most pheromone based implantations use visual pheromones by employing fluorescent

foil [66, 83] or LCD-screens (Liquid Crystal Display) [7], to overcome this issue. These

implementations demonstrate the efficiency and simplicity of these algorithms, but are

not applicable in a real-world environment. Implementations suitable for real-life sce-

narios apply gas, e.g. ethanol (C2H5OH) as a pheromones substitute [44], this limits the

duration, of the algorithm execution, to amount of gas a robot can carry. Technology

able to produce pheromones from resources in the environment are still in development

and will extend the variety of use cases for algorithms like HybaCo.

Wireless communication based coordination algorithms e.g. BeePCo are already

applicable with modern technology, but still are facing challenges in the context of

swarm robotics. One of them being the relative position estimation of other robots

in the group. In the context of BeePCo, robots require the relative location of their

neighbouring partners to cover the environment efficiently. This localisation can be

difficult, especially in an indoor environment, where position systems e.g. GPS, are

not applicable. Additionally, in order to provide a bigger swarm size, most swarm

robots platforms are kept simplistic and low in price. Most of these robots have a

limited payload and computing power, which doesn’t allow for heavy sensors or highly

computational algorithms.

The following chapter proposes a system to tackle these issues on an aerial platform,

more specifically pocket drones (quad-copter). Quad-copters have the advantage to scan

the environment in a top-down fashion and not being affected by obstacle on the ground,

but their payload and computations capabilities are limited. The proposed system uses

radio-wave distance calculation in combination with neural networks and particle filters

to provide relative positions estimation. Additionally, it employs a second neural network

93

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 94

for low-level navigation and collision avoidance. The aim of this system is to provide

position estimation, navigation and collision avoidance to high-level coverage techniques,

such as BeePCo, to transition them from a ground to an aerial coverage approach. The

following Section 7.1 will detail the employed techniques and provides an overview over

the structure of this chapter.

7.1 Introduction

Coordination is a challenging issue in multi-robot systems and the more global knowledge

a robot has the easier the problem becomes [38]. Such knowledge includes the global

position and velocity of a robot and its coordination partners. Most of the time this

information is obtained by employing a global map in combination with vision or laser

based localisation [39]. This information is then passed on to a centralised system, or

to each robot individually, in order to execute the best movement action possible.

When working with smaller robots, for instance pocket drones, these techniques are

usually infeasible since most localisation techniques like “Vision-based localisation and

mapping” are computationally too expensive and the robots might not be able to carry

the required equipment. The MAVs (Micro Aerial Vehicle) used in this research have

a payload of around 20g, therefore, we are aiming for a light weight hardware solution,

which can provide us with enough information to perform multi robot coordination,

but doesn’t require extensive post-processing such as laser scan matching or image pro-

cessing. Some work already going on in a similar direction, is for example the system

proposed in [9] consists of speakers and an array of microphones. By employing the

obtained distance and bearing information, and by applying particle filters, the UAVs

(Unmanned Aerial Vehicle) are able to detect and track neighbouring robots. Another

system is proposed in [84] where ground robots are equipped with infra-red emitters

and receivers in a spherical layout; both systems only perform on short distances and

need additional processing power to calculate distances and filter external audio/light

noises. The system proposed in this chapter is based on ultra wide band (UWB) distance

calculations (see Section 2.5). These sensors are sending radio messages back and forth

between two devices. The distance is then calculated by multiplying the duration, by the

speed of travel. UWB systems are mostly used for global localisation by placing multiple

UWB-modules in fixed known locations, a mobile device can be tracked by triangulation.

Due to the small footprint and payload of our MAVs, we are only able to carry one mod-

ule, triangulation is therefore not an option and we have to rely on sequences of distance

measurements to provide a sufficient movement strategy. Programming and designing

movement policies, e.g. based on state machines, can be a difficult and time consuming

job because all edge cases have to be covered and extensively tested. The difficulty is

also intensified if the input data is only a partial representation of the environment. In

order to tackle this problem we are applying a recurrent neural network (Section 2.2.2)

in combination with a particle filter (Section 2.4), to extract features from a sequence of

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 95

states to make the world more observable and therefore the application of a movement

policy possible.

In the last couple of years recurrent neural networks have shown great performance

in tasks which rely on understanding state sequences, for example: natural language

processing or playing 3D games like Doom ([62],[37],[90]). Most of those models are

applied on a computer generated environment and do not suffer from real-world sensor

noise. In our case we are trying to obtain a movement policy which can operate on

a robotic system. The system has to be able to control the movement of the drone

towards a desired target position and avoid all approaching drones on the way. Each

drone operates individually and is only provided with a distance to a target position,

distances to approaching drones and velocity measurements. Our model consists of a

recurrent neural network for sequential feature extraction, a particle filter to ensure

stability in state predictions and a Deep Q-Learning Network (DQN) (see preliminaries

Section 2.3.2) providing the movement policy.

The remainder of this chapter is organised as follows. Sections 7.2 and 7.3 describe

the employed hardware in form of the quad-copter and UWB-module. Section 7.4 de-

scribes the structure and techniques of the proposed model, providing position estimation

and motion control. Section 7.5 describes the training of the neural networks the model

contains. Section 7.6 and 7.8 illustrate the simulation and real-world experiments the

model is evaluated on. The experiments results are further discussed in Section 7.9 and

the chapter is concluded in Section 7.10.

7.2 Drone

This section shows the employed quadrotor and its integration in the system. Sec-

tion 7.2.1 shows the hardware specification and Section 7.2.2 illustrates the drones ad-

ditional velocity control implementation and its interface to the proposed model.

7.2.1 Specifications

The employed platform is called crazyflie, produced by the company BitCraze (Fig-

ure 7.1). It is a 27 g micro drone, based on a STM32 micro processor (192Mhz), with a

maximal payload of 15 g. The drone provides with SPI (Serial Peripheral Interface) and

I2C (Inter-Integrated Circuit) two hardware interfaces to connect external devices to the

drone. The flight controller firmware is an open source software written in C allowing

complete customisation. The flight controller utilises a cascades PID-controller (see Sec-

tion 2.6.5), for a stabilised flight. The controller is able to control angular velocity and

attitude in roll, pitch and yaw-axes of the drone.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 96

Figure 7.1: Employed drone named crazyflie. Right image shows a crazyfie with
motion tracking markers, necessary to track position and orientation of the drone.

7.2.2 Velocity estimation and control

The model proposed in Section 7.4 requires linear velocity control along the x-, y- and

z-axis, to navigate and hold positions. In order to allow the velocity control, we supply

the drone with additional velocity information provided by a motion tracking system.

The motion tracking system uses an array of infra-red (IR) cameras to estimate the

position and velocity of the drones. In order to calculate the position, the tracked drone

have to carry reflective markers (Figure 7.1). These markers bounce emitted IR-light to

the cameras, enabling the detection and position estimation. By dividing the difference

between two consecutive positions, by the time difference ∆t we obtain the velocities for

all axes. The motion tracking system limits the application of the proposed model its

capture volume. The capture volume describes the volume the system is able to track

the drone.

Figure 7.2: Simplified motion tracking rig. Cameras (red boxed) are placed around
the capture volume. Each camera emits IR-light, which bounces from the reflective
markers of the object into the image-sensors of the cameras. If the system find at least
two images showing the same marker, it is able to triangulate the marker position in

3D. The system requires at least three markers to estimate the objects orientation.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 97

A
ltitu

d
e

movement
in image

drone
movement

Figure 7.3: Optical flow sensor: The system is able to measure the linear velocity of
the drone, by tracking the movement of features (flower) in two consecutive images. By
knowing the field of field (dashed lines) of the camera and the altitude of the drone,

the system is able to estimate the velocity.

In order to overcome this limitation in the future, the motion tracking system will be

substituted by a optical flow system. An optical flow sensor uses a small camera at the

bottom of the drone to measure the velocity in the x- and y-axis and rotational velocity

around the yaw-axis. Additionally, it employs a distance sensor (for instance sonar) to

detect the height. The optical flow sensor tracks features in two consecutive images and

measures the moved distance (in pixel) between the images. By knowing the height,

returned from the distance sensor and the intrinsic parameters of the camera, it is able

to derive the velocity in x-, y- and yaw. The climb rate (velocity in z-axis), is measured

by the distance sensor (Figure 7.3).

These measurements (from motion tracking or optical flow) are utilised by a PID-

controller to control the velocities of the drones. The controller is placed on top of the

native controllers and passes down set-points, based on the difference between target-

and current velocity. The proposed model resides on top of the velocity controller,

deciding on movement actions and passing down velocity commands, which are then

maintained in a closed loop fashion, by the velocity controller (Figure 7.4).

Level 1 Altitude Controller

Level 2 Linear Velocity Controller

Level 3 Model (Navigation/Collision avoidance)

Level 0 Angular Velocity Controller

Figure 7.4: Hierarchy of drone controllers. The dashed line marks the border between
the native drone controllers at the bottom and the newly added linear velocity controller

and the proposed model at the top.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 98

7.3 Ultra Wide-Band Distance Calculation

The system proposed in this chapter provides navigation and collision avoidance for high

level swarm coordination principles on pocket drones. As described in Section 7.1 is the

position estimation between the drones, an intermediate challenge we are tackling.

We are applying Ultra Wide-Band UWB distance calculation in combination with

the model described in Section 7.4 to accomplish this task. UWB distance calculation

uses radio-wave based communication to determine distances between two devices. By

exchanging multiple messages back and forth, the system is able to determine the travel

time of a specific message. The distance is obtained by multiplying the duration of a

single message exchange, by the speed of travel (light speed).

The employed message protocol requires four messages for the distance calculation

and is usually known as two-way ranging. For more detail about UWB distance calcu-

lation and two-way ranging, see Section 2.5.

UWB distance calculation has different properties, which makes it attractive in the

field of pocket drones. Its hardware is extremely light and the communication can pen-

etrate through walls and obstacles. Since it uses messages for the distance calculation,

it provides an option to exchange additional information between the drones. It is able

to integrate this information in the normal message exchange. This makes it attractive

for message based coverage approaches such as BeePCo (Section 4).

The remainder of this section describes the employed hardware in Section 7.3.1, its

noise model in Section 7.3.2 and the handling of cross-talking in Section 7.3.3.

7.3.1 Hardware

The UWB distance calculation is accomplished by the DWM1000 module produced by

the company DecaWave. The module bases on Decawave’s DW1000 UWB transceiver

and integrated additional antenna, power management and clock circuitry required for

the distance calculation. The module stores the time stamps of send and received mes-

sages in memory, this functionally is necessary for an accurate estimate of a messages

travel duration. The functionalities of sending, receiving and reading message time

stamps are accessible via the hardware interface SPI (Serial Peripheral Interface). In

order to use this interface, we designed a circuit board which connects the SPI-buses of

drone and UWB-module and regulates battery voltage to the required 3.3V. A schematic

of the board can be seen in Figure 7.5a.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 99

ANTENNA
ANTENNA
ANTENNA

(a) (b)

Figure 7.5: A: Shows the schematic designed to connect the UWB-module to the
drone. B: Shows the module (DWM1000), surrounded by the red rectangle, connected

to the crazyflie.

7.3.2 UWB Noise Model

In order to simulate the UWB-module’s distance estimation and have an overview over

its performance. We collected the module distance estimation at different fixed distances

and did 40 flights with random movement and compared the estimation with the data

gathered from the motion capture system. The error between actual and estimated

distance data is modelled as a normal distribution with a mean of µ = 0.0085569 and

standard deviation of σ2 = 0.061295.

7.3.3 Communication Protocol

The distance between two drones is calculated by applying a two-way ranging protocol,

which requires four message exchanges, for more detail see Section 2.5. A drone has to

initialise a two-way ranging communication with all neighbouring drones to receive their

distances. Depending on the swarm size, this can result in a lot of parallel communica-

tions, causing interference in the message exchange. This effect is reduced by reporting

the calculated distance back to the communication partner and utilisation of a token

ring protocol.

The distance is usually calculated by the device initialising the conversation, by

reporting the distance back to the communication partner, this partner doesn’t require

an extra two-way communication. The token-ring is a common principle in wireless

communication to inhibit parallel communications, by allowing only the devices holding

a token to initialise conversations. After the device gathered the required information

it passes the token to the next device etc. The employed token-ring protocol can be

simplified in the following steps: All drones have a unique id and the drone with the

lowest id is initialised with a token. This drone initialises the two-way ranging with the

next higher id (See Algorithm 11).

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 100

Algorithm 11: initialise ranging for id i

1: set the current communication parter to i+ 1
2: initial two-way ranging with communication partner

All continued steps are trigger when a new message is received. If the received

message is the last message of the ranging protocol, it calculates the distance, sends

it to the last communication partner and initialises a ranging communication with the

next possible drone. If it received the distance to all drones it passes the token on

and the process continues. After the token reaches the second to last highest id, the

distance between all drones are updated, and the token is passed on to the first drone

etc. The process, triggered by a received message, is illustrated in the pseudo-code of

Algorithm 12.

Algorithm 12: message received by id i

1: if message contains token then
2: save token
3: initialise ranging (Algorithm 11)
4: else
5: if message is last message of two-way ranging communication then
6: calculate distance
7: report distance to last communication partner
8: if last communication partner has highest possible id then
9: forward token to next possible partner

10: else
11: initial two-way ranging with next communication partner
12: end if
13: else
14: continue two-way ranging
15: end if
16: end if

In order to increase the update rate, the implemented system allows handling of multiple

tokens. but in the scenarios described in Section 7.8 the use of one token is sufficient

and inhibits the possibility of interference.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 101

LSTM	

…	

…	
LSTM Layer
512 Cells

RNN

Output
Size 18 x 2

Particle Filter
Output 2 x 1

Sensor
Input

Sensor Input

.

.

.

Position Estimation Movement

Estimated
Positions

Layer 1
Size 100

DQN

.

.

.

.

.

.

Layer 2
Size 100

Action
scores

Goal

Obstacle
Y

X

X

Y

Figure 7.6: Architecture and data flow of the employed model.

7.4 Model

The model is designed to provide navigation and collision avoidance on pocket drones

for autonomous flight, high level coverage or coordination approaches. As mentioned

in Sections 7.2 and 7.3, the applied hardware is able provide distances between drones

and their velocities, but is not able to provide the relative position between the drones,

natively.

Therefore, the extraction of the relative position based on the provided data, is one

of the proposed models aims. Since it is mathematically not possible to determine the

position based on a single state (distance and velocity at time t). It has to be able to

analyse a sequence of states, to extract an accurate estimation.

A continues position estimation and tracking over the complete group of drones is

computational expensive, especially with an increasing group size. This means, the

system should only track drones, important for the collision avoidance and allow a quick

estimation of new drones if they become important.

A valuable technique to estimate the position based on movement and distance mea-

surements is a particle filter, described in Section 2.4. It initialises particles based on

a random distribution. Each particle represents a possible position and orientation of

a drone. The filter moves the particle according to the odometry (measured velocity)

and weighs their probability based on the distance measurements. By resampling more

likely particles, in every time step, the distribution converges towards the actual position

(Section 2.4). The quality of the estimation and the speed of the convergence, depends

partially on the initialisation of the samples. The closer they are spawned to the actual

solution, the more likely they converge to a correct solution. Additionally increases the

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 102

probability of finding a valuable solution, proportional to the sample count. A higher

sample size causes consequently, computational overhead and the increases the likelihood

of a convergences to multiple possible solution.

In order to compensate those issues, we employ a Recurrent Neural Network (RNN)

to estimate the required positions and use a particle filter to stabilise the estimations

(Figure 7.6). This reduces the necessary particles to a minimum and increases the speed

of convergence, shown in Sections 7.6 and 7.8. The combined system is used to estimate

the position of drones and navigation goals. It requires a separate particle filter for

each position it has to track, but can utilised the same RNN for the estimation. During

this chapter we refer the navigation destination of the system as goal and the drone the

system is trying to avoid as obstacle (see Figure 7.6).

The second part of the proposed system uses the estimated goal and drone positions,

to navigate and avoid collisions with other drones. It employs a Deep-Q Network (DQN)

to calculated the optimal action based on its current state (Figure 7.6). For more

information about DQNs see Section 2.3.2.

The remainder of this section is structured as follows: Section 7.4.1 describes ter-

minology and assumptions employed for the remainder of this section. Section 7.4.2

describes the structure, input and output states of the employed RNN, Section 7.4.3

shows the specifics of the particle filter and its combination with the RNN. The section

is concluded with a description of structure, input and output states of the employed

DQN in Section 7.4.4.

7.4.1 Terminology and Assumptions

This section describes the terminology and assumptions, employed in the following sec-

tions detailing the proposed model. One of the main assumption is that all drones

operate at the same altitude. This is caused by the fact that drones in an indoor en-

vironment with an average sealing height are not able to fly over one another. Since

this causes a so called prop-wash effect, where the drone on the top, blows air on the

drone at bottom. This additional air flow complicates the dynamics and therefore the

stabilisation of the drone, causing it to oscillate and eventually crash.

The second reason for using the same altitude, is that it reduces the navigation and

position estimation to 2D-problems, which also simplifies the transfer of ground robot

coordination principles to this drone system.

All following terminologies are summarised in Table 7.1. A subtask of our system,

is to navigate a controlled drone, to its destination and avoid other drones on the way.

During this chapter, we will refer the destinations as goals and since the system has to

avoid the others drones, we refer them as obstacles.

The second subtask of the system is the positions estimation of these obstacles, by

using a sequence of sensor inputs. Additionally, we use the same system and input state

structure (see Section 7.4.2) to estimate the goal position. This has the advantage, that

can we use other drones or robots (with a UWB-module) as navigation destination,

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 103

Term Description Default Parameter

Goal Destination (position) a drone is
trying to reach.

–

Obstacles Drones the observed agent is trying
to avoid.

–

Object Position Describes the position of either a
goal or an obstacle.

P

Orientation Describes the yaw-rotation of an ob-
stacle in the frame of the observed
drone

θ

Distance Distance to an object estimated by
the UWB-module

d

Bearing Angle describing the direction
pointing to an obstacle or goal.

α

Table 7.1: Terminology Chapter 7

which is an interesting feature in exploration or search and rescue scenarios. Therefore,

when we talk about the position estimation of an object, the object can either be a goal

or an obstacle. The estimated position is formalised with by the variable P .

As mentioned before, the position estimation can be reduced a 2D-problem, and the

occurring geometry can be described as follows. When we describe the estimation of

a goal or obstacle position, we always take the view of the drone performing the esti-

mation. Therefore, all positions and orientations are in local frame of this particular

drone. Besides estimating the positions of goal and obstacle, the particle-filter requires

additionally the orientation of the obstacle (see Section 7.4.3). Since the drones operate

on a 2D-plane, the particle filter requires exclusively the yaw-rotation (rotation around

the up pointing z-axis) of the tracked object. As a result the mentioning of the orienta-

tion (θ), during this chapter, will always refer to the yaw-rotation of an obstacle, in the

local frame of the drone we observe (Figure 7.7b). Since the system acquires a distance

from the UWB-module, the 2D-position estimation can be reduced to a one dimensional

problem, when using a polar coordinate system. Polar coordinates describe a 2D-point

by its distance (d) from the origin and the angle (α) describing the direction to the point.

This is shown in Figure 7.7b. During this chapter we will refer the direction angle as

bearing. The mentioned terminology is summarised in Table 7.1.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 104

Input state

cell-status
current

RNN
LSTM

convert to
radians

convert to
radians

Bearing estimation (α)
One-hot encoding

Orientation estimation (θ)
One-hot encoding

Distance (d)
UWB-Module

+ Position (P)
local frame

Orientation (θ)
local frame

cell-status
updated

0
0
1
0

1
0
0
0

(a) RNNs data flow: The figure shows the single steps required, to obtain estimated position
and orientation of an object, based on a given input state.

Local Frame

α

θP

x

y

d

(b) Geometric interpretation: α: Bearing estimation returned from the RNN. d: Distance
measure by the UWB-module. P : Estimated position of the object, calculated by combing

bearing α with the distance d. θ: RNN’s orientation estimation.

Figure 7.7: Estimation of the objects position and orientation, provided by the RNN.

7.4.2 Recurrent Network Model

Recurrent neural networks (RNN) have the ability to “remember” previous input states,

allowing them to extract informations from a sequence of states. Instead of simply

propagating the data from the input- to the output-layer of the network, RNNs contain

recurrent links propagation the data back to nodes of the same or previous layers. These

recurrent connections can therefore be seen as memory. For more detail about RNNs,

see Section 2.2.2. The employed RNN uses Long-Short-Term-Memory (LSTM) cells

with the ability to “remember” states over a longer period of time. The cells are able to

make decisions, when to store, read or forget these informations, by utilising gates know

as input gate, output gate and forget gate. The behaviour of these gates depends on

weights, which are learned during the training process. For more detail about LSTMs,

see Section 2.2.4.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 105

The aim of the RNN, is to estimate the bearing to a certain object (goal or drone)

and the objects relative orientation (yaw-rotation θ). Using the estimated bearing α

(in radians) and the distance d received from the UWB-module, we can calculate the

relative x and y position of the object, assuming the drones operate at the same altitude

(see assumptions, in Section 7.4.1):

x = d · cos(α) (7.1)

y = d · sin(α) (7.2)

The estimated bearing α can either be pointing towards a goal or to another drone. The

ability to use the same RNN to estimate the goal and obstacle positions is enabled by

the way its implemented. Instead of storing the cell status in the network, it is stored

externally and given as an additional input every time, an estimation is required (see

Figure 7.7a). The network returns the estimation together with the updated cell-status.

This allows to track a unlimited amount of objects (drones/goals) as long as the system

stores a different cell-status for each object.

The estimated orientation θ, represents the translation between the own frame and

the frame of the object. This information is required by the particle filter, in order

to translate the objects velocity into the local frame of the current drone. The RNN

requires, as input, the delta time dt since the last update, the distance d to an object,

its own velocity (vx, vy) and the velocity of the object (vox, voy). Therefore, is the input

state defined as (dt, d, vx, vy, vox, voy). where:

dt: Time passed since last update d: Distance to object

vx: Local velocity in x-direction vy: Local velocity in y-direction

vox: Objects velocity in x-direction, in

local frame of obstacle

voy: Objects velocity in y-direction, in

local frame of object

Preliminary tests showed that the inclusion of the objects velocity information, result in

a high gain, in the networks performance. Since the ranging requires a message transfer,

we are able to include this information into the ranging message.

The RNN illustrated in Figure 7.6 consists of one layer of 512 LSTM-cells and dis-

cretises the output angles (orientation and bearing) in steps of 20 degrees, resulting in

two vectors with the size of 1× 18. Each output is an one hot encoding vector, marking

the predicted angle-class with one and all others with zero (see Figure 7.7a).

The loss-function used to evaluate the network performance during training is the

combined cross-entropy of the predicted vectors and an one hot encoded vector of the

actual bearing/orientation angle.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 106

7.4.3 Particle Filter

In the particle filter, each particle represents a possible position and orientation of an

object (goal or drone). By moving each particle according to the movement measured

(u), provided by the odometry (Section 7.2.2) and by calculating their probability in

respect to the sensor data (z), certain particle become more likely than others and the

estimation will converge towards a probable solution. For more details about parti-

cle filters see 2.4. All parameters required to describe the employed particle filter are

summarised in the following Table 7.2.

vx: Local velocity in x-direction vy: Local velocity in y-direction

vox: Objects velocity in
x-direction, in local frame of
objects (goal/obstacle)

voy: Objects velocity in
y-direction, in local frame of
object (goal/obstacle)

P or x: Representation of particle
pose with x-position,
y-position and yaw-rotation:
x = P = (Px Py Pθ)

u: Movement update,
combination of local velocity
and velocity of object
u = (vx, vy, vox, voy)

dt: Time passed since last
update

z: Distance measurement
(UWB-module)

m: Number of samples s: s ∈ [0, 1] determines the
percentage of particles
spawned based on the RNN
estimation.

lr: Linear x- and y-range
samples are spawned around
the RNN estimation.

ar: Angular range spawned
samples are orientated
around the RNN estimation.

Table 7.2: Particle filter Parameters

In the proposed model, the main purpose of the particle filter is to stabilise and disre-

gard unrealistic estimations, made by the RNN. The RNN is able to provide a sufficient

estimation of the object it tracks, but has no validation if two consecutive estimations

are physically possible. Since the particle filter takes the motion into account, it is able

to filter outliers and maintain previous probable estimations.

As mentioned in Section 2.4, the filter updates the particles based on the control ut

for every time step t. In the case of our model, is ut the combination of the x and y

velocities (vx, vy) of the observed drone and the velocities (vox, voy) of the drone/goal

represented by the particles. Since the particles are in the local frame of the observed

drone, we apply the inverse of the own velocity and translating the velocity of the object

into the own local frame, to derive the new particle pose P ′. The movement update

applied to the particle pose P is summarised in the following Algorithm 13:

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 107

Algorithm 13: Motion update

1: apply_motion(ut, P , dt)
2: initialise P ′ = P
3: extract vx, vy, vox, voy from ut
4: // apply inverted velocity
5: P ′x = Px − vx · dt
6: P ′y = Py − vy · dt
7: // rotate object velocity into local frame and apply to particle position
8: P ′x = P ′x + (vox · cos(Pθ)− voy · sin(Pθ)) · dt
9: P ′y = P ′y + (vox · sin(Pθ) + voy · cos(Pθ)) · dt

10: return P ′

The weighting is done based on the noise model of the DecaWave UWB-module, shown

in Section 7.3. The filter itself operates similar to a standard particle filter, but besides

resampling probable particles, it additional draws a small percentage (s), based on the

estimation made by the RNN. In order to avoid redundancy in the recently spawned

samples, we introduce a slight randomness to the estimated poses. The generating

process of these kind of particles is described in Algorithm 14.

Algorithm 14: generate RNN sample

1: generate_RNN_sample()
2: generate P based on RNN estimation

3: Px = Px+ random
(
− lr

2
,
lr
2

)
4:

5: Py = Py+ random
(
− lr

2
,
lr
2

)
6:

7: Pθ = Pθ+ random
(
−ar

2
,
ar
2

)
8: return P

The complete pseudo code, of the particle filter implementation, is illustrated in Algo-

rithm 15, the major alteration can be seen in lines 9 - 13. By employing the additional

knowledge from the RNN, we are able to reduce the particle count to a minimum, while

providing a stable estimation and fast converging speed (see Section 7.6 and 7.8).

7.4.4 Deep Q-Network

Reinforcement learning is designed to learn a policy for choosing the “best” action based

on the current state. This is realised by incentivising a learning agent with rewards, by

allowing the agent to interact with an environment and administer a positive reward for

reaching desired states and giving a negative reward for reaching undesired states. The

reward is determined by a designed reward function. The Deep-Q-network DQN, is a

neural network to approximate a function determining the long term reward, of taken a

specific action in a specific state. This function is usually known as Q-function, where

the quality of a state action pair, is determined by a so called Q-value, see Section 2.3.2.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 108

Algorithm 15: Alternated Particle Filter (lines 9 - 13)

1: particle_filter(Xt−1, ut, zt)
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: x

[m]
t = apply_motion(ut, x

[m]
t−1)

5: w
[m]
t = weight_sample(zt, x

[m]
t−1, m)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: end for
8: // generate new samples based on RNN estimation
9: N = s ·M

10: for i = 1 to N do
11: add xt = generate_RNN_sample()
12: add xt to Xt

13: end for
14:

15: for i = 1 to M −N do
16: draw i with probability w

[i]
t

17: add x
[i]
t to Xt

18: end for
19: return Xt

Based on the networks estimation, the desired policy is achieved by choosing the action

proving highest Q-value score.

In respect to the proposed model, the reward function’s reward is increased when the

distance to the goal decreases and reduced when the agent approximates other drones

or crashes. For more detail about the used reward function, see Section 7.5.4. The

employed DQN has two fully connected hidden layers with size 100 nodes each, see

Figure 7.6. The input is a vector of size 1 x 7 and the output is a Q-action value vector

with a size of 9. The possible actions are fixed accelerations in eight different directions

with a 45◦ step size, the remaining action decelerates the drone’s velocity. The DQN

requires relative 2D coordinates to the goal (dx,dy) and the obstacle (ox, oy), provided

by the particle filter, its own velocity (vx, vy) and the delta time dt since the last update.

The input state is therefore defined as (vx, vy, dx, dy, ox, oy, dt). Where:

vx: Velocity on x-axis vy: Velocity on y-axis

dx: Distance to goal on x-axis dy: Distance to goal on y-axis

ox: Distance to obstacle on x-axis oy: Distance to obstacle on y-axis

dt: Time passed since last update

(delta time)

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 109

7.5 Training

The following section describes the training of the two employed neural networks. Sec-

tion 7.5.1 describes the employed simulator, Section 7.5.2 illustrates the frame skipping

technique to reduce the required training time. Section 7.5.3 details the training used

for the recurrent neural network (RNN) and Section 7.5.4 concludes the section with a

description of the Deep-Q Network (DQN) training.

7.5.1 Simulation

The training is conducted in a 2D python simulator with a simple inertia and noise

models based on the employed drone and UWB-module (Section 7.3.2). The system is

evaluated, in real life and simulation, on maximal four drones. In order to provide a

challenging setting the test-area is kept relatively small, with a area size of 3 m× 3 m.

7.5.2 Frame Skipping

Frame skipping [11] is a common technique, used for playing 2D or 3D games with neural

networks. This technique handles the problem that consecutive states or, in their case,

images look similar. This makes it difficult to find features or patterns in a sequence

of input states. The solution to the problem is to skip steps in between, however it is

important that the action, which was applied before the skipping, is held until the next

used frame. In the hardware setting, we are working in, this could also be referred to

as update rate. In order to accomplish this, both our networks have to be synchronised.

At each update step, the DQN is choosing an action based on the input state, provided

by the RNN’s predictions, the action is held until the next step etc. During training

and execution the update-rate is kept at 8 Hz.

7.5.3 Recurrent Neural Network

All parameters and setting used for the training of the RNN are summarised in Table 7.3.

The RNN is trained in a supervised fashion, by gathering data over a longer time period

and training the network offline (see Section 2.2.3). In our case, the data is a collection

of 3000 episodes. One episode is a 10 minute scenario of two drones flying in a 3 m×3 m

area. We are collecting data of both drones, this adds up to around 41 days worth of data.

The simulated drones use a pre trained DQN policy on perfect position information and

to a certain extent random moves. We are recording the direction to the other drone,

the bearing to a fixed target point and the required input states. Since there is a relation

between the goal position and the direction the movement policy is travelling, we are not

recording the actual goal position, instead we are choosing a fixed point at random. The

data is recorded without any sensor noise, the sensor noise is added to the data every

time a new batch is drawn from the data set; this prevents the network from over fitting.

The network draws every training-step a batch of b data sets, compares its prediction

with the actual state and back-propagates the error through the network to adjust the

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 110

o1# o2# o3# o4# o5# o6# o7#

Y5# Y6# Y7#

updated states

observation states

Figure 7.8: In this example only errors of k > 4 are back propagated through the
network.

weights using gradient descent. During our training we keep the batch size b to a size

of 30. As described in Section 7.4.3 is the bearing, the network is trying to estimate,

divided into discrete angles with a step size of 20 degrees. The accuracy of the network

can therefore be defined as the amount of the correctly predicted angle classes divided

by batch size it is evaluated on.

The main purpose of the designed network, is the estimation of the current bearing

to an object, based on the sequence of input states. Similar to the approach presented

in [62] we are drawing sequences of observations of length n from a replay buffer. Since

the states in the beginning of the sequence don’t have a lot of information to rely on,

we are only considering states, which have at least k predecessor states. Therefore, we

only back propagate errors through the network for states k and higher as illustrated

in Figure 7.8. The converging speed depends on number of states considered for the

update. Figure 7.9 shows that it takes the optimiser, which considered the last ten

states, significantly less iterations to reach a 90% accuracy, than the optimiser which

only considered one state. Based on these results we set the minimal history count k to

15 and we update the 10 consecutive states, which results in the sequence length n of

25.

For stability, we divide the recorded data into a training, validation and test set.

The ratio is 64% for training, 16% for validation and 20% for test data. The sets are

randomly sampled. The networks training and hyper parameter tuning is done on the

training set and its performance is validated on the validation set, during training. The

test-set is used as a final confirmation of the training performance after the training, to

avoid overfitting.

As a metric, we apply the mean accuracy of all predicted angles and their target value.

We save the weights, when the accuracy improves over a fixed number of validations. The

training takes approximately eight hours, on our setup and converges towards a accuracy

of 95%. During training, the weights are updated using the RMSProp algorithm with

a learning rate of 0.001. The learning rate determines how aggressive the optimiser

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 111

Parameter Setting Description

Training size 64% Percentage of total set used for training.

Validation size 16% Percentage of total set used for validation.

Test size 20% Percentage of total set used for final test-
ing.

b 30 Batch size during training.

n 25 Length of state sequence used, to train the
network.

k 15 Number of states, in the beginning of the
sequence, not considered for the update of
the network, see Figure 7.8.

Optimiser RMSProp Algorithm used to optimise the weights,
based on current prediction error.

Learning rate 0.001 Determines the rate the optimiser adapts
the weights.

Table 7.3: Parameters employed to train the recurrent neural network.

0 200,000 400,000 600,000
Steps

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

1 states updated

5 states updated

10 states updated

Figure 7.9: Converging behaviour based on the number of states considered for the
update.

updates the weights, to match the outputs from the current batch. All previous described

parameters are summarised in Table 7.3.

7.5.4 Deep Q-Network

The main goal of the Deep Q-Network (DQN) is to learn a policy to guide the drones

towards a target position and avoid other drones on the way. During the training process

the agent is continuously interacting with the environment and recording the current

state st, the taken action at, a reward rt returned by the environment and the state st+1

it transitioned to. These recording are usually known as experiences:

et = (st, at, rt, st+1)

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 112

These experiences are stored in an experience buffer of size N , where the oldest expe-

rience is dropped, when the storage-size exceeds N . The training is done in an online

fashion, where the network weights are continuously updated, while the agent is inter-

acting with the environment. Every i time steps, a batch of b experiences is drawn

from the buffer to train the network. The aim of the training is to approximate a func-

tion, representing the long-term reward of taking an action a in a certain state s. The

learning process is categorised as reinforcement learning and the function it approxi-

mates, is called Q-function. For more detail about reinforcement learning and DQNs

see Section 2.3.

The employed reward function is designed to incentivise actions bringing the drone

closer to the goal, while keeping a certain safety distance to the surrounding drones.

Therefore, we define the reward as the negative distance to the goal. If the distance to

another agent is under a defined threshold c, we add a second negative reward as the

inverse of this distance. Both rewards are normalised and can be defined as follows:

r =

−d1, if d2 ≥ c
−d1 + p · d2 − c

c
, otherwise

(7.3)

With d1 as the goal distance, d2 the distance to the closest drone and c being the safety

distance, the agents are trying to maintain. Additionally, we apply the fixed factor p to

increase the negative impact of going below the safety distances. The network is trained

with the RMSProp algorithm and a learning rate of 0.0003. All previously mentioned

parameters and their settings are described in the following Table 7.4.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
Episodes

−1.0

−0.8

−0.6

−0.4

−0.2

M
e
a
n
 r

e
w

a
rd

DQN

Figure 7.10: DQN’s average estimated reward over 100 randomly selected states.

In reinforcement learning we can’t evaluate the model on a pre recorded validation

set. In order to tackle this problem, we apply the evaluation metric suggested by [40],

where the evaluation selects m random states in the beginning of the training. After

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 113

each iteration, we calculate the maximal reward possible for each state, based on the

estimation of the current DQN. The calculated rewards are averaged over the number

of states:

x =

m∑
i=1

Qmaxa(si, a)

m
(7.4)

Every time a DQN weight configuration is able to surpass the previous achieved average,

its weights are stored. A converging of the networks prediction, is indicated if the average

remains constant for a longer period of time. Depending on the machine, the training

takes around three hours to converge to a stable state. This can be seen in Figure 7.10,

where the network reaches a constant estimation after around 1000 episodes. For the

action selection, during training we apply ε-greedy. In this selection process has the

learner a probably of ε, of choosing a random action and a 1− ε probability of selecting

an action based on the networks Q-Value. To explore the reward-function, ε is initialised

with εstart = 80% and decayed linear over time to its final value of εend = 10%. We set

the duration ε is reduced in, to εd = 90 min. All previously discussed parameters and

their settings are summarised in Table 7.4.

Parameter Setting Description

st – State at time step t.

at – Action taken at time step t.

rt – Reward gathered at time step t.

b 30 Batch size used during training.

N 5000 Maximum size of replay buffer.

d1 – Distance to goal.

d2 – Distance to closest drone.

c 30 cm Minimal safety distance.

i 2 Determines step frequency the network is trained
in.

m 100 Number of randomly selected states to evaluate the
DQN’s performance.

ε – Probability of choosing a random action during
training.

εstart 80% Value ε is initialised with.

εend 10% Final value ε is reduced to, over time.

εd 90 min Duration in which ε is reduced from εstart to εend.

p 2.0 Factor to amplify the negative reward, caused by
approaching drones under the safety distance.

Optimiser RMSProp Algorithm used to optimise the weights, based on
current prediction error.

Learning rate 0.003 Determines the rate the optimiser adapts the
weights.

Table 7.4: Parameters employed to train the Deep Q-Network.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 114

System Description

RNN The pose-estimation is exclusively done by the RNN.

Hybrid (30) The pose-estimation is done by combining the estima-
tion of the RNN together is a particle filter using 30
particles.

Particle (30) The pose-estimation is exclusively done with a particle
filter using 30 particles.

Particle (100) The pose-estimation is exclusively done with a particle
filter using 100 particles.

Particle (300) The pose-estimation is exclusively done with a particle
filter using 300 particles.

Particle (900) The pose-estimation is exclusively done with a particle
filter using 900 particles.

Table 7.5: Settings employed in evaluation.

7.6 Simulation Experiments

The following Section describes the initial evaluation done in simulation. Since the

proposed system employs a recurrent neural network RNN and a particle filter, we

compare its performance with the components it consists of. The system is divided in

two parts, the first part is responsible for estimating 2D-poses of drones and goals, based

on a sequence of input states and the second part handles the navigation and collision

avoidance. Section 7.6.1 illustrates the setting each algorithm is tested in, Section 7.6.2

analysis the different configurations in respect to the pose-estimation performance and

Section 7.6.3 investigates the navigation performance of the combined system.

7.6.1 Evaluated Configurations

Since the navigation part of the system consist of a neural network, which doesn’t

doesn’t require any extra parameters to operate, we mostly compare the pose-estimation

sub-system in different configurations. A system exclusively relying on the estimation

provided by the recurrent neural network (RNN), will be referred to as RNN-system,

a system exclusively relying on a particle-filter will be referred to as Particle-system

and the system combining those previously mentioned systems, will be referred to as

Hybrid-system.

The particle-system is evaluated in different number of particle sizes: 30, 100, 300

and 900. In the hybrid-system, we aiming to keep the number of particle required

low and evaluate its performance with 30 particles. All evaluated configurations are

summarised in Table 7.5. The simulated distance calculation employs the noise-model

of the UWB-module, described in Section 7.3.2. The environment, the algorithms are

evaluated in has a size of 3 m× 3 m.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 115

RNN

Hybrid (30)

Particle (30)

Particle (100)

Particle (300)

Particle (900)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
n
ce

 e
rr

o
r

[m
]

0

20

40

60

80

100

120

140

160

180

Y
a
w

 e
rr

o
r

[D
e
g
re

e
]

Figure 7.11: Error distribution achieved by different estimation configurations, in
respect to distance and orientation estimation.

7.6.2 Pose Estimation

The pose estimation is evaluated in a setting with two drones. The estimation is isolated

from the movement, where the simulated drones are controlled by DQN base on perfect

position information. The DQN is navigating the drones towards goal-positions and

avoids the other drones (obstacles), if necessary. During this section, we evaluate the

accuracy of the different system configurations, presented in the previous Section 7.6.1.

The systems are continuously estimating the positions and orientations of the goal and

obstacles, in the frame of the drone they are executed on. The goal position, the system

has to estimate, is independent from the goal the drone is navigating to and randomly

chosen in the beginning of a run. Selecting an independent goal for the estimation,

allows us to see how stable the estimation performs over a longer period of time. The

navigation goal is altered as soon as it is reached. This enables a continues movement

of the drones.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 116

Algorithm Mean distance error Standard deviation

RNN 0.26m 0.25m
Hybrid (30) 0.17m 0.19m
Particle (30) 0.94m 0.61m
Particle (100) 0.54m 0.38m
Particle (300) 0.33m 0.31m
Particle (900) 0.20m 0.23m

Table 7.6: Mean-error and standard deviation (position estimation).

Algorithm Mean yaw error Standard deviation

RNN 23.41◦ 31.39◦

Hybrid (30) 20.66◦ 30.95◦

Particle (30) 75.64◦ 53.95◦

Particle (100) 63.74◦ 60.20◦

Particle (300) 35.61◦ 46.49◦

Particle (900) 21.50◦ 34.99◦

Table 7.7: Mean-error and standard deviation (orientation estimation).

The metric to determine the position accuracy is the euclidean distance between

the actual position and its estimation. The orientation error is defined as the shortest

angular distance between the true angle and estimated angle. Each configuration is

executed over 30 runs with a runtime of 90 s.

Figure 7.11 illustrates the error distributions over all runs. Tables 7.6 and 7.7 show

the mean-error and standard deviation for the position and orientation estimation and

Figure 7.12 presents the estimation progression over a representative single run.

When we consider the particle-filter exclusive configuration, we can see that the per-

formance increases proportional to the number of particles applied. This behaviour can

equally be observed in the position estimation, as in the relative orientation estimation.

Table 7.6 shows a steady improvement starting with and mean distance-error of 94 cm

for 30 particles and ending with mean distance-error of 20 cm for the 900 sample con-

figuration. Table 7.7 show the same effect in the estimations of the yaw-orientation.

Ranging from mean-error of 21.50◦ degrees for 900 particle setting to the maximal mean

error of 75.64◦ degrees in the 30 particle-system. Additionally, we can see the same

effect for the standard deviation of both metrics, shown in Table 7.6, Table 7.7 and

Figure 7.11. In terms of stability, we can see in Figure 7.12, that a high particle count,

especially in the beginning, increases the chance of converging to the accurate solution,

but this causes an additional computational overhead discussed in Section 7.9.

The result in Table 7.6, Table 7.7 and Figure 7.11 show that the RNN-system is

able to surpass the performances of most particle-based configurations, by performing

slightly under the performance of the highest particle configuration. Its mean-error is

around 26 cm for the position estimation and 23◦ for the orientation. An advantages of

the RNN can be seen in Figure 7.12, where it is able to converge the fastest to a relative

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 117

RNN

Hybrid (30)

Particle (30)

Particle (100)

Particle (300)

Particle (900)

0 10 20 30 40 50 60 70 80 90
Run time [s]

0.0

0.5

1.0

1.5

2.0

D
is

ta
n
ce

 e
rr

o
r

[m
]

0 10 20 30 40 50 60 70 80 90
Run time [s]

0

20

40

60

80

100

120

140

160

180

Y
a
w

 e
rr

o
r

[D
e
g
re

e
]

Figure 7.12: Performance over a single run

accurate position and angle estimation, but the figure shows also occasional spikes or

outliers in the estimation.

Lastly, the Table 7.6 and Table 7.7 show that the proposed hybrid system is able to

the achieve the lowest standard deviation and mean error of all tested evaluation metrics.

With a mean-error of 17 cm for the position estimation and 20.66◦ for the orientation

estimation. It is able to utilise the fast initial estimation made by the RNN, while

providing a stable estimation through the particle filter (see Figure 7.12). Figure 7.12

shows that the approach requires around to 10s converge to a stable estimation. When

we consider the estimation error after the initial phase the hybrid approach achieves

a mean-error of around 0.07 cm with a standard deviation of 0.07 cm. All results are

further discussed in Section 7.9.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 118

Algorithm 1 Robot 2 Robots 3 Robots 4 Robots

RNN 8.65 8.73 7.74 5.36
Hybrid (30) 9.95 9.00 7.92 6.07
Particle (30) 0.70 0.63 0.40 0.54
Particle (100) 1.95 1.93 1.72 1.87
Particle (300) 5.65 5.49 2.99 2.58
Particle (900) 7.95 7.78 3.83 2.20

Table 7.8: Average goals per minute achieved in a run.

7.6.3 Navigation Performance

Where the previous Section 7.6.2 evaluated the pose estimation isolated from the motion

controller. This section investigates to what extent the position estimation and the

number of drones is influencing the navigation and collision avoidance of the system.

The system is evaluated on 1 − 4 robots in a 3 m × 3 m area, employing the different

estimation configuration introduced in Section 7.6.2. Each configuration is executed 50

times, with a run time of 90 s. The drones are initialised at random a position in the

environment. In order to test the navigation, each drone is given a goal point it has to

reach. As soon as drone is in proximity of a goal it is given the next one etc. A run is

prematurely terminated when two drones collide.

As described in Section 7.4, the system is only given the distance to the goal and

the position estimation provided by the internal estimation model. By only employing

the goal distance, we are able use other UWB-modules as goals, this functionally is

beneficial for future applications e.g. foraging and search and rescue scenarios.

In order to evaluate the performance of the navigation, we measure the average

goals “collected” per minute and the percentage of total runs completed. The results

are illustrated in Tables 7.8 and 7.9.

In terms of navigation, we general can see, that the rate of goals reached per minute

decreases with an increasing number of drones (Table 7.8). This can be explained by the

fact that a higher number of drones forces the control network (DQN) to chose longer

routes, in order to avoid collisions. Therefore, we can consider the setting with a single

drone as benchmark for the other configurations of the same algorithm. This shows that

the navigation performance improves, when the pose estimation has a quick converging

time. Since the RNN- and Hybrid-system converge the fastest, they are able to reach the

most goals per minutes (Table 7.8). The reason for this is, that the faster the estimation

converges towards the true position, the faster is the control network able to reach the

target position.

Table 7.8 and Table 7.9 show that the drone number increase, has a higher negative

impact on the configurations, exclusively relying on particle filter estimation. Especially

on the collision avoidance shown in Table 7.9. The proposed hybrid model is able to finish

98% of the runs with 3 drones and 88% the runs with 4 drones. The best performing

particle-system reaches 72% of the runs with 3 drones and 36% the runs with 4 drones.

This is due to the converging speed and the design of the estimation system. Since we

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 119

Algorithm 1 Robot 2 Robots 3 Robots 4 Robots

RNN 100% 92% 76% 56%
Hybrid (30) 100% 100% 98% 88%
Particle (30) 100% 86% 42% 28%
Particle (100) 100% 82% 56% 16%
Particle (300) 100% 92% 72% 36%
Particle (900) 100% 100% 72% 36%

Table 7.9: Percentage of completed runs, in respect to the different estimation con-
figurations.

are trying to avoid computational overhead, because of the execution on pocket drones,

we only consider the closest drone for the estimation and consequently the collision

avoidance. This means the estimation system has to provide a fast estimation of new

drones position, if the drone of interest changes.

The hybrid system provides the overall best performance, but still has some colli-

sions in the setting with a higher robot count. One of the reasons for this is, that the

simulated environment is surrounded by walls and it can happen that the DQN trig-

gers an avoidance action, which results in a collision with a wall and eventually with

the drone it is trying to avoid. This is because the current drone hardware is not able

to provide a distance measurement to the walls and is therefore not considered in the

current motion decision of the DQN. Additional sensors like these, will be included in

the next hardware interaction as part of the future work.

7.7 Computational Overhead

The major benefits of the introduced hybrid system is that it is able to match the

accuracy and converging time of a system with high particle count, while minimising the

computational overhead. Table 7.10 shows the time each system requires to estimate the

position of the other drones. In order to investigate how the system scales, we evaluate

the estimation times of up to 3 drones. The calculation time is averaged over 30 runs,

for each configuration. As shown in Table 7.10, RNNs estimation requires, on our setup,

Algorithm 1 Robot 2 Robot 3 Robot

Particle (30) 11.8528 ms 21.0967 ms 33.4906 ms
Particle (100) 20.5191 ms 43.5611 ms 66.3835 ms
Particle (300) 47.1051 ms 94.0268 ms 137.2816 ms
Particle (900) 125.0071 ms 243.4804 ms 377.6352 ms
Hybrid (30) 15.6430 ms 30.5485 ms 43.4412 ms
RNN 4.3397 ms 9.3460 ms 13.4269 ms

Table 7.10: Computation time each configuration requires to estimate the positions
of 1 - 3 drones.

only around 4.33 ms per drone (see Table 7.10 row 6). By adding the small particle-

filter in the hybrid configuration, we add an additional 11.85 ms per additional drone,

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 120

Figure 7.13: Employed motion capture system to provide the drones with velocity
information and for recording position informations for post-performance evaluation.

The tracking cameras can be seen in the top-part of the image.

while improving the accuracy as discussed in Section 7.6. All systems scale linear, since

each additional drone increases the computation time around the same amount. When

we compare the proposed hybrid system with the particle filter with a similar accuracy

(900 particles), we are able to reduce the computation time by a factor of 8, which is

important for update-rate dependent applications e.g. collisions avoidance.

7.8 Real-world Experiments

A practical use-case for pocket drones is mostly an indoor environment, since they are

light and sensitive to strong winds and gust. Their advantage against ground robots is

their ability to fly and therefore the option to avoid obstacles in the third dimension.

Furthermore, they are able to observe the environment from a top-down perspective,

which can be an advantage in certain use cases, e.g. surveillance and exploration. The

tests are therefore applied exclusively indoors, in the robotic-lab of the University of

Liverpool. The test area measures a size of around 4m × 4m. To execute the developed

approach on real-drones, we employ the open-hardware platform called “crazyflie”, de-

scribed in Section 7.2. Additionally, we employ an optical tracking system to provide the

drones with valuable velocity information and track their position, in order to evaluate

the proposed systems position estimation, see Figure 7.13. Similar to the tests in sim-

ulation, the evaluation described in this section is twofold. Section 7.8.1 describes the

performance in respect to the position estimation sub-system and Section 7.8.2 shows

complete prosed model performing navigation and collision avoidance.

7.8.1 Position Accuracy

As described in Section 7.4, the proposed model is divided into two sub-systems. The

first system estimates the position and orientation of other drones and goals, based on

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 121

System Description

RNN The pose-estimation is exclusively done by the RNN.

Hybrid (30) The pose-estimation is done by combining the estimation
of the RNN, together with a particle filter using 30 parti-
cles.

Particle (30) The pose-estimation is exclusively done with a particle fil-
ter using 30 particles.

Particle (100) The pose-estimation is exclusively done with a particle fil-
ter using 100 particles.

Particle (300) The pose-estimation is exclusively done with a particle fil-
ter using 300 particles.

Particle (900) The pose-estimation is exclusively done with a particle fil-
ter using 900 particles.

Table 7.11: Settings employed in evaluation.

the input states described in Section 7.4.2. The second sub-system is responsible for the

control of the drone.

During this section, we are exclusively focusing on the pose-estimation performance

of the system. The pose-estimation combines a particle-filter with recurrent neural

neural network to provide a fast and stable estimation (see Section 7.6). Similarly to

the evaluation in simulation, we compare the hybrid system against the components it

consist of.

A system exclusively relying on the estimation of the recurrent neural network

(RNN), will be referred to as RNN-system, a system exclusively relying on a particle-

filter will be referred to as particle-system and the system combining those two tech-

niques will be referred to as hybrid-system. The particle-system is evaluated in different

number of particle sizes: 30, 100, 300 and 900. In the proposed hybrid-system, we aim-

ing to keep the number of particle required low and evaluate its performance with 30

particles. All evaluated configurations are summarised in Table 7.11.

In order to estimate the system performance on the real UWB-module’s distance

data, we employ three drones. Two drones performing a random walk and the third

drone poses as a fixed “goal” pose, in a save distance. The random walk is performed by

the movement network (DQN), on perfect position information provided by the motion

capture system.

All drone positions, velocities and distance informations (UWB-module) are recorded

over 20 runs. The position of the “fixed” drone is altered in every run. The estimation

and its evaluation is executed offline, on the recorded data. This allows us to test the

system in every possible setting and reduces the number of flights required.

By considering the view, of one of the moving drones, the system has to estimate

the positions and orientations of the two remaining drones. As metrics, we apply the

euclidean distance error between estimated and actual positions as well as the difference

between estimated and actual orientation (yaw-rotation). Both results are illustrated

in Figures 7.14 and 7.15 and Tables 7.12 and 7.13. The number in the brackets behind

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 122

RNN

Hybrid (30)

Particle (30)

Particle (100)

Particle (300)

Particle (900)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
is

ta
n
ce

 e
rr

o
r

[m
]

0

20

40

60

80

100

120

140

160

180

Y
a
w

 e
rr

o
r

[d
e
g
re

e
s]

Figure 7.14: Error distribution achieved by different estimation configurations, in
respect to distance and orientation estimation.

the name of the approach, indicates the amount of particles used. The figures and

tables show a similar behaviour seen in the simulated tests. Figure 7.14 shows the

average error over all runs and reveals that the RNN has a similar error profile as the

particle filter configurations with higher particle counts. The distance error between

estimated obstacle/goal position is around 34cm and the average error of the estimated

obstacle orientation is around 31◦. The performance of the particle filter exclusive

configurations is improved by an increasing the particle count, but the tests show that

configuration with higher particle count have the tendency to converge to multi possible

solutions/particle clouds, which explains the slight drop in performance between the 300

and 900 particle configuration. A lower particle count configuration is faster in terms

of computation, but it less likely to converge to a correct solution and if the particles

are drifting away from the correct solution, it is less likely to recover. The evaluation

shows that combination of RNN and particle filter is a promising compromise, it doesn’t

require a high quantity of particles to keep the error low (see Figure 7.14) and it converges

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 123

Algorithm Mean yaw error Standard deviation

RNN 31.00◦ 34.82◦

Hybrid (30) 13.56◦ 18.82◦

Particle (30) 89.76◦ 49.11◦

Particle (100) 58.93◦ 48.28◦

Particle (300) 28.88◦ 34.37◦

Particle (900) 17.80◦ 13.58◦

Table 7.12: Mean-error and standard deviation (orientation estimation).

Algorithm Mean yaw error Standard deviation

RNN 0.34m 0.44m
Hybrid (30) 0.17m 0.27m
Particle (30) 0.79m 0.56m
Particle (100) 0.57m 0.50m
Particle (300) 0.37m 0.35m
Particle (900) 0.38m 0.22m

Table 7.13: Mean-error and standard deviation (orientation estimation).

quicker to a accurate estimate than the best performing particle filter configurations (see

Figure 7.15).

When comparing the results between real-world experiments an the simulation, we

can see that most configuration achieve a similar performances in both environments.

The only setting, suffering from a significant drop in performance is the configuration

using 900 particles. This can happen when addition noise of movement and distance

measurements is introduced and multiple particle clouds have a high probability of

representing the correct solution. The higher the particle count the more likely is the

converging to multiple solutions.

This illustrates additionally the robustness of the hybrid-system. When the particle

filter is stuck in a local minima, the network can introduce new plausible positions,

pushing the estimation towards the actual solution. Figure 7.15 shows the performance

of each configuration in an average run. It shows that the pure RNN and the hybrid-

configuration are converging quicker, than the pure particle based configurations, to

a accurate position estimation. After an initial phase, the hybrid approach is able to

maintain a low estimation error, where the RNN shows some outliers.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 124

RNN

Hybrid (30)

Particle (30)

Particle (100)

Particle (300)

Particle (900)

0 10 20 30 40 50 60 70 80
run time [s]

0

20

40

60

80

100

120

140

160

180

y
a
w

 e
rr

o
r

[d
e
g
re

e
s]

0 10 20 30 40 50 60 70 80
run time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
is

ta
n
ce

 e
rr

o
r

[m
]

Figure 7.15: Performance over a single run

7.8.2 Navigation

The previous Sections 7.6 and 7.8.1 showed that the proposed hybrid approach is able to

provide a stable and accurate position estimation with a fast converging time, in simu-

lation and with real sensor data. The final tests, described in this sections, are designed

to examine the control network (DQN), in combination with its position estimation sub-

system. The position estimation is exclusivity executed by the hybrid-model, introduced

in Section 7.4.

The complete system, is tested in two types of scenarios. A random goal-scenario

and a pre-defined goal scenario. In the former scenario the drones are give random

destinations, as soon as a drone is in proximity of its goal, it is assigned to a new goal.

This scenario is designed to check, if the drones are able to operate in a relative confined

space for a longer period of time without crashing. It is executed for 2− 4 drones, with

a runtime of two minutes.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 125

Drone1

Drone2

(a)

Drone1 Drone2

Drone3

(b)

Figure 7.16: Fixed goal-point scenarios.

The pre-defined goal setting, is designed to compel the drones to avoid collisions.

Figure 7.16a illustrates the first scenario, where two drones have to switch places. This

means, if they chose the shortest route possible they are on a direct collision path. The

second scenario, positions three drones in a equilateral triangle shape, their destinations

are chosen in a way, that each drone has to cross the path of the two other drones, see

Figure 7.16a. Each scenario, including the random flights, are executed 10 times.

The simulation experiments in Section 7.6 showed that system is able to provide a

sufficient collision avoidance even in drone denser scenarios. One issue, mentioned in

Section 7.6, is that the network responsible for the movement, does not take the walls

into account, which will be tackled in future work. In order to take this problem out

of the equation, all selected goals have at least a 1 m buffer to the outside of the test

environment.

One additional precautionary measure, is to restrict the maximal velocity of drones in

close proximity to one another. The network responsible for the movement is trained to

maintain a safety distance from at least 30 cm, see Section 7.5.4. Therefore, we limit the

velocity of two drones to 10 cm/s, if there distance between each other is smaller than

30 cm (trained safety distance).

The proposed control and estimation model are executed externally and are trans-

ferred to the software stack of the drone as part of the in future work. By applying the

previous mentioned precautionary measures, all runs were finished without any collisions.

Figure 7.17d illustrates a representative run of 4 drones with its traversed trajectories

and the continues movement of the drones. Table 7.14 shows to what extent the move-

ment policy benefits from the “slow-down”-strategy and its total activation time during

a run. The total duration the strategy is active, increases with the number of robots.

Starting with a 0% activation in the 0 drone setting and increasing to a 10% activation,

over the full run-time, in the 4 drone setup.

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 126-10
x[m]

-1

0

y[m
]

(a) 2 Drones: Fixed goal points.

-101
x[m]

-1

0

1

y[m
]

(b) 3 Drones: Fixed goal points.

-2 -1 0 1 2
x[m]

-2

-1

0

1

y[
m

]

(c) 2 Drones: Random goal points. -2 -1 0 1 2
x[m]

-2

-1

0

1
y[

m
]

(d) 4 Drones: Random goal points.

Figure 7.17: Path-recordings of the real-world tests.

2 Robot 3 Robot 4 Robot

Slow-down active(%) 0% 4% 10%

Table 7.14: Illustrates the percentage of total run-time (120 s), the drones using the
reduced velocity-strategy, in order to avoid collisions.

Finally, Figures 7.17a and 7.17a presents the trajectories in the fixed goal setting and

show that the learned policy is able to reach their final destinations, but prefers wider

paths to avoid collisions. The figures show additionally, that the system is executing

curves in the beginning of the path, before it converges towards a direction to the goal.

The behaviour is caused by the fact, that the estimation, requires a sequence of velocity

and distance inputs to approximate the goals position. Since the goal is not moving, the

estimation is exclusivity relying on the velocities of the drone executing the estimation,

the first “random” movement is required to converge the estimation towards the actual

goal position.

The experiments show that the trained networks are transferable to the real-life

system and are able to provide the required navigation and collision avoidance ability.

All results are further discussed in Section 7.9 and a video of the previous mentioned

experiments can be found at: https://youtu.be/yj6Qqh0zpok

https://youtu.be/yj6Qqh0zpok

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 127

7.9 Discussion

The previous experiments in Section 7.6 and 7.8, showed that the proposed system

is able to provide the required pose estimation, navigation and collision avoidance on

pocket drones. In terms of pose estimation, achieves the model consisting of a recurrent

neural network (RNN) and a particle-filter, a fast and accurate estimation and is able to

outperform standard particle-filter implementations (Figures 7.11, 7.12, 7.14, 7.16 and

Tables 7.6, 7.7, 7.12, 7.13). The results show additionally, that the trained RNN is able

to provide a sufficient estimation on its own, which reduces the number of particles,

required to stabilise the estimation to a minimum. The experiments show that particle

filter, especially with a small particle count have a tendency to converge to a local

minima, the “educated guess” from the RNN allows to overcome this issue. The fact that

the network of the hybrid system uses only one layer of LSTM-cells (Section 7.4) and the

particle filter requires only a small quantity of particles (30), reduces the computational

power needed, which makes the system attractive for ultra-light platforms e.g. pocket

drones. Lastly, the comparison between the performances in the simulation- and real-

world environment, showed that the system is able to provide a similar performance

in both scenarios. This displays the robustness of the system, since the simulation

and the underlying models are only a simplified approximation of the real-world. Since

we use the same parameters in simulation and real-world, we can conclude that the

system performance doesn’t rely significantly on parameter tuning to derive the required

accuracy.

In regards to proposed DQN network, we showed that is able provide the required

navigation and collision avoidance with multiple drones, in the simulated and real en-

vironment. As seen in Tables 7.8 and 7.9 is the performance depending on the quality

of the pose estimation. The experiments showed that the estimation by the proposed

model is sufficient, if certain precautionary measures are given. These measures include

a safety distance to the wall and a limitation of velocities, for drones in close proximity.

Since the employed reinforcement learning approach is able to learn on its own and the

employed network-structure is relatively compact, we are able train the network with

additional input information, e.g. distance to wall, in a relative short time period (3h).

Additional sensors for wall detection and internal velocity estimation are part of the

future work, discussed in Section 8.

7.10 Conclusion

During this chapter we address research questions RQ4 and RQ5:

Research Question RQ4: How can modern sensors and technology be applied to

provide a bio-inspired coordination on pocket drones?

Research Question RQ5: To what extent can deep learning be beneficial for the

performance of the hardware discovered in RQ4?

Chapter 7. Distance-based Multi-robot Coordination on Pocket Drones 128

We show how modern communication technology in form of UWB-communication

provides a ultra light weight solution to calculate distances between robots and show how

deep-learning can be applied to utilise this data to offer low computational navigation

and robot-robot localisation to high level coordination principles.

The aim of the system, described in this chapter, is to provide position estimation,

navigation and collision avoidance to high-level coverage techniques e.g. BeePCo (Sec-

tion 4), to transition them from a ground to a aerial coverage approach.

In the scope of this chapter, we introduced a novel end-to-end system, which is ca-

pable of providing these capabilities on pocket drones. Pocket drones’ limited payload

and computational power, complicates the required position estimation. The proposed

system uses distance information, gathered by a light weight UWB-module, in combina-

tion with velocity measurements to tackle this issue. The position estimation is handled

by a particle filter in combinational with small recurrent neural network. Experiments

showed that the combination outperforms the traditional particle filter approaches in

terms of converging speed, robustness and computational overhead.

The navigation and collision avoidance is accomplished by a Deep-Q Network DQN,

applied to estimate the underlying Q-function in a reinforcement setting. These networks

are commonalty used in computer games and other simulated environment. During the

course of this chapter, we show that we are able to transfer the learned policy from

a simple simulation environment, to the real robot platform and provide the required

navigation and collision avoidance strategy. The developed hardware and software is

publicly available under the repositories described in the Appendix B.

Chapter 8

Conclusions and Future Work

To conclude, we can divide the thesis in two separate parts, which ultimately can be

combined to solve coordination and coverage issues in light weight multi-robot systems.

In the first part of the thesis, we draw inspiration from behaviours and strategies seen

in the social insect colonies, specifically bees and ants. Classical centralised multi-robot

approaches require expensive sensors to provide the required global state representation

and complex computations to handle the massive state space, occurring in large groups of

robots. An individual social insect employs only local information and simple strategies,

which emerge over the large number of cooperating agents to complex task solvers.

The two proposed algorithms, i.e. of BeePCo (Bee Pheromone Coverage) and HybaCo

(Hybrid Bee and Ant-pheromone Coverage), are based on the pheromone communication

of insects and combine them with a simple rule based system, to provide efficient and

robust coverage approaches. Where BeePCo relies exclusively on pheromone propagation

observed in bee-hives, HybaCo combines this approach with the passive commutation

of ants, to improve the overall performance of the system. Over the course of this thesis

we examined BeePCo’s and HybaCo’s strengths and weaknesses w.r.t. sensor coverage.

Both previous mentioned approaches show a high scalability and robustness in all

evaluated scenarios, but their application is restricted to controlled environments e.g.

simulation or laboratories. Certain aspects, like for example the artificial pheromone

generation and sensing required in HybaCo, are currently researched and will extend

the range of application in future work.

BeePCo relies on local communication and sensing between the cooperating agents.

Communication based coordination principles for instance BeePCo are feasible with

modern day technology, but are still facing challenges on the light weight robot platforms,

which most swarm robot techniques rely on. In the context of BeePCo, this is the relative

localisation of their neighbouring partners.

The second part of the thesis proposes a complete end-to-end system, tackling these

challenges and applies the developed technology on the aerial light weight platform,

known as pocket drones. The proposed system uses radio-wave distance calculation in

combination with neural networks and particle filters to provide the necessary relative

positions estimation. Since aerial platforms are vulnerable to collisions, we employ the

129

Chapter 8. Conclusions and Future Work 130

capabilities of an additional neural network (DQN) to provide low-level navigation and

collision avoidance. The simple and deterministic structure of the networks, allow for a

fast calculation with low computational overhead, necessary for the application on light-

weight platforms. These combined abilities then allow for a straightforward transition

of ground-base coordination principles (e.g. BeePCo) to the proposed aerial system.

8.1 Contributions

The main contribution of this thesis can be summarised as follows:

Chapter 4 presents the novel coverage approach BeePCo (Bee Pheromone Coverage).

Inspired by the pheromone propagation, it is able to distribute and weight important

position information, to allow for a simple and effective coverage of the environment.

Conducted experiments highlight BeePCo’s ability to achieve a high sensor coverage and

converging rate, compared with other pheromone coverage principles.

Chapter 5 introduces HybaCo (Hybrid Bee and Ant Coverage) a novel bee- and ant-

based pheromone coverage approach. HybaCo combines the virtual message strategy,

proposed in BeePCo, with the passive ant pheromone communication observed in ant-

colonies and introduced in previous work [83]. By utilising the information, obtain from

both communication principles, with a simple rule-base movement behaviour, HybaCo is

able to provide an effective continuous coverage (sweeping coverage). Experiments show

that HybaCo combines the strengths and exceeds the performances, of both underlying

approaches.

Chapter 6 presents a case study investigating the influence of the environment shape,

on the performance of the proposed algorithms BeePCo and HybaCo. It shows that

the maximal area covered is only marginally affected by the environment, where the

time required to reach the maximal coverage increases in environments with confined

and hidden spaces. These findings are valuable to determine BeePCo’s and HybaCo’s

deployment in the future.

Chapter 7 presents a complete end-to-end system, allowing the transition of ground

based coordination approaches, e.g. BeePCo, to aerial applications on pocket drones.

The system utilised Ultra-Wide-Band (UWB) distance calculation, particle-filter and

neural networks (RNN and DQN) to provide relative position estimation, navigation

and collision avoidance capabilities. The simple and deterministic structure of the neural

networks, allow a fast calculation with low computational overhead, necessary for the

application on light-weight platforms.

Chapter 8. Conclusions and Future Work 131

8.2 Future Work

This section discusses limitations and use-cases, which are beneficial to explore in the

future. As mentioned before the system proposed in Chapter 7 is designed to provide

relative pose-estimation, navigation and collision avoidance behaviour to extend the use-

case of ground based coordination principles to aerial applications. Therefore, the imple-

mentation of BeePCo on this system is one of the next steps, for BeePCo’s application

in real-world scenarios. BeePCo relies on direct communication, to propagate virtual

pheromone messages through the multi-robot system. Since the UWB-distance calcula-

tion is realised by exchanging messages between neighbouring devices, we can implement

BeePCo’s propagation by integrating the required information into the range-messages.

Most of the restrictions of the pocket drone system (Chapter 7) are hardware based.

The required velocity information is currently provided by a motion capture system. In

order to allow an application outside the tracking system, we need to supply the drones

with a sensor capable of measuring linear movement e.g. visual flow (see Section 7.2.2).

The second sensor related limitation, is the fact that the UWB-module is able to provide

distances information to drones, but not to walls or other solid obstacle. This makes

the drones “blind” in this regard, and can cause collisions with the environment. One

valuable option to provide this data is the employment of light distance sensors e.g.

sonar. In order to utilise additional sensor information, in the movement policy, provided

by the Deep-Q Network (DQN), we have to include this information in the simulator,

input state and reward function and simply retrain the network.

Chapter 8. Conclusions and Future Work 132

8.3 Publications

The material from Chapter 4 is presented in publications 1 and 2. Material from Chap-

ter 5 is featured in publication 3. The Material from Chapter 6 is illustrated in publi-

cation 4 and the material shown in Chapter 7 is presented in publication 5.

[1] B. Broecker, I. Caliskanelli, K. Tuyls, E. Sklar. A Bee Pheromone Signalling

Approach. In: Artificial Life and Intelligent Agents (ALIA), 2014 [17]

[2] B. Ranjbar-Sahraei and K. Tuyls and I. Caliskanelli and B. Broecker and D.

Claes and S. Alers and G. Weiss. Bio-inspired multi-robot systems, pp. 273-299,

Woodhead Publishing, 2015 [80]

[3] B. Broecker, I. Caliskanelli, K. Tuyls, E. Sklar, D. Hennes. Social Insect-Inspired

Multi-Robot Coverage In: Proceedings of the 2015 International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), 2015 [15]

[4] B. Broecker, I. Caliskanelli, K. Tuyls, E. Sklar, D. Hennes. Hybrid Insect-Inspired

Multi-Robot Coverage in Complex Environments. In: Towards Autonomous Robotic

Systems (TAROS), 2015 [16]

[5] B. Broecker, K. Tuyls, J. Butterworth Distance-based multi-robot coordination

on pocket drones, Submitted.

Appendix A

Extended Experiments Chapter 6

The following appendix contains the full set of plots, generated during the experiments

described in Chapter 6. Section A.1 includes all coverage related figures and Section A.2

incorporates all plots related to the algorithms distribution over time.

A.1 Coverage

The follow pages show all figures related to the coverage of BeePCo, HybaCo and StiCo

conducted during the experiments described in Chapter 6. Figures A.1- A.4 compares

each algorithm against its own performance in the different environments (Section 6.1)

with respect to the number of robots. Figures A.5- A.8 compare the performances

between the algorithms in respect to the environment and the robot count.

133

Appendix A Extended Experiments Chapter 6 134

100 101 102 103

Time Steps

0.0

0.2

%
 A

re
a
 C

o
v
e
ra

g
e

StiCo (10) - U-shapes

StiCo (10) - w/o obstacles

StiCo (10) - 4-axis symmetry

StiCo (10) - office-shape

(a) StiCo

100 101 102 103

Time Steps

0.0

0.2

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (10) - U-shapes

BeePCo (10) - w/o obstacles

BeePCo (10) - 4-axis symmetry

BeePCo (10) - office-shape

(b) BeePCo

100 101 102 103

Time Steps

0.0

0.2

%
 A

re
a
 C

o
v
e
ra

g
e

HybaCo (10) - U-shapes

HybaCo (10) - w/o obstacles

HybaCo (10) - 4-axis symmetry

HybaCo (10) - office-shape

(c) HybaCo

Figure A.1: Compares the achieved area coverage between the environment, using 10
robots.

Appendix A Extended Experiments Chapter 6 135

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

%
 A

re
a
 C

o
v
e
ra

g
e

StiCo (20) - U-shapes

StiCo (20) - w/o obstacles

StiCo (20) - 4-axis symmetry

StiCo (20) - office-shape

(a) StiCo

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (20) - U-shapes

BeePCo (20) - w/o obstacles

BeePCo (20) - 4-axis symmetry

BeePCo (20) - office-shape

(b) BeePCo

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

%
 A

re
a
 C

o
v
e
ra

g
e

HybaCo (20) - U-shapes

HybaCo (20) - w/o obstacles

HybaCo (20) - 4-axis symmetry

HybaCo (20) - office-shape

(c) HybaCo

Figure A.2: Compares the achieved area coverage between the environment, using 20
robots.

Appendix A Extended Experiments Chapter 6 136

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8
%

 A
re

a
 C

o
v
e
ra

g
e

StiCo (30) - U-shapes

StiCo (30) - w/o obstacles

StiCo (30) - 4-axis symmetry

StiCo (30) - office-shape

(a) StiCo

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (30) - U-shapes

BeePCo (30) - w/o obstacles

BeePCo (30) - 4-axis symmetry

BeePCo (30) - office-shape

(b) BeePCo

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

%
 A

re
a
 C

o
v
e
ra

g
e

HybaCo (30) - U-shapes

HybaCo (30) - w/o obstacles

HybaCo (30) - 4-axis symmetry

HybaCo (30) - office-shape

(c) HybaCo

Figure A.3: Compares the achieved area coverage between the environment, using 30
robots.

Appendix A Extended Experiments Chapter 6 137

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

StiCo (40) - U-shapes

StiCo (40) - w/o obstacles

StiCo (40) - 4-axis symmetry

StiCo (40) - office-shape

(a) StiCo

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (40) - U-shapes

BeePCo (40) - w/o obstacles

BeePCo (40) - 4-axis symmetry

BeePCo (40) - office-shape

(b) BeePCo

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

HybaCo (40) - U-shapes

HybaCo (40) - w/o obstacles

HybaCo (40) - 4-axis symmetry

HybaCo (40) - office-shape

(c) HybaCo

Figure A.4: Compares the achieved area coverage between the environment, using 40
robots.

Appendix A Extended Experiments Chapter 6 138

100 101 102 103

Time Steps

0.0

0.2

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (10) - U-shapes

StiCo (10) - U-shapes

HybaCo (10) - U-shapes

(a) U-shapes

100 101 102 103

Time Steps

0.0

0.2

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (10) - 4-axis symmetry

StiCo (10) - 4-axis symmetry

HybaCo (10) - 4-axis symmetry

(b) 4-axis symmetric

100 101 102 103

Time Steps

0.0

0.2

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (10) - office-shape

StiCo (10) - office-shape

HybaCo (10) - office-shape

(c) floor-plan

Figure A.5: Compares the achieved area coverage between BeePCo, HybaCo and
StiCo, using 10 robots.

Appendix A Extended Experiments Chapter 6 139

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (20) - U-shapes

StiCo (20) - U-shapes

HybaCo (20) - U-shapes

(a) U-shapes

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (20) - 4-axis symmetry

StiCo (20) - 4-axis symmetry

HybaCo (20) - 4-axis symmetry

(b) 4-axis symmetric

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (20) - office-shape

StiCo (20) - office-shape

HybaCo (20) - office-shape

(c) floor-plan

Figure A.6: Compares the achieved area coverage between BeePCo, HybaCo and
StiCo, using 20 robots.

Appendix A Extended Experiments Chapter 6 140

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8
%

 A
re

a
 C

o
v
e
ra

g
e

BeePCo (30) - U-shapes

StiCo (30) - U-shapes

HybaCo (30) - U-shapes

(a) U-shapes

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (30) - 4-axis symmetry

StiCo (30) - 4-axis symmetry

HybaCo (30) - 4-axis symmetry

(b) 4-axis symmetric

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (30) - office-shape

StiCo (30) - office-shape

HybaCo (30) - office-shape

(c) floor-plan

Figure A.7: Compares the achieved area coverage between BeePCo, HybaCo and
StiCo, using 30 robots.

Appendix A Extended Experiments Chapter 6 141

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (40) - U-shapes

StiCo (40) - U-shapes

HybaCo (40) - U-shapes

(a) U-shapes

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (40) - 4-axis symmetry

StiCo (40) - 4-axis symmetry

HybaCo (40) - 4-axis symmetry

(b) 4-axis symmetric

100 101 102 103

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 A

re
a
 C

o
v
e
ra

g
e

BeePCo (40) - office-shape

StiCo (40) - office-shape

HybaCo (40) - office-shape

(c) floor-plan

Figure A.8: Compares the achieved area coverage between BeePCo, HybaCo and
StiCo, using 40 robots.

Appendix A Extended Experiments Chapter 6 142

A.2 Distribution over time

The follow pages show all figures related to the distribution over time conducted during

the experiments described in Chapter 6. Figure A.9 - A.12 illustrate the distributions in

the heap-map visualisation (introduced in Section 4.4) for BeePCo, HybaCo and StiCo

in all employed environments and robot quantities.

Appendix A Extended Experiments Chapter 6 143

Coverage per Cell 100%0%

(a) StiCo - Environment
without obstacles

(b) BeePCo - Environment
without obstacles

(c) HybaCo - Environment
without obstacles

(d) StiCo - U-shape environ-
ment

(e) BeePCo - U-shape envi-
ronment

(f) HybaCo - U-shape envi-
ronment

(g) StiCo - 4-axis symmetric
environment

(h) BeePCo - 4-axis symmet-
ric environment

(i) HybaCo - 4-axis symmet-
ric environment

(j) StiCo - office
environment

(k) BeePCo - office environ-
ment

(l) HybaCo - office environ-
ment

Figure A.9: The distribution over time, in the different arenas, using 10 robots. The
coverage is illustrated in a gradient color scheme. A cell is coloured white, if it is
covered 100% of the run time and coloured black for a 0% coverage. The intermediate

percentages are colour accordingly to the scale at the top of the figure.

Appendix A Extended Experiments Chapter 6 144

Coverage per Cell 100%0%

(a) StiCo - Environment
without obstacles

(b) BeePCo - Environment
without obstacles

(c) HybaCo - Environment
without obstacles

(d) StiCo - U-shape environ-
ment

(e) BeePCo - U-shape envi-
ronment

(f) HybaCo - U-shape envi-
ronment

(g) StiCo - 4-axis symmetric
environment

(h) BeePCo - 4-axis symmet-
ric environment

(i) HybaCo - 4-axis symmet-
ric environment

(j) StiCo - office
environment

(k) BeePCo - office environ-
ment

(l) HybaCo - office environ-
ment

Figure A.10: The distribution over time, in the different arenas, using 20 robots.
The coverage is illustrated in a gradient color scheme. A cell is coloured white, if it is
covered 100% of the run time and coloured black for a 0% coverage. The intermediate

percentages are coloured accordingly to the scale at the top of the figure.

Appendix A Extended Experiments Chapter 6 145

Coverage per Cell 100%0%

(a) StiCo - Environment
without obstacles

(b) BeePCo - Environment
without obstacles

(c) HybaCo - Environment
without obstacles

(d) StiCo - U-shape environ-
ment

(e) BeePCo - U-shape envi-
ronment

(f) HybaCo - U-shape envi-
ronment

(g) StiCo - 4-axis symmetric
environment

(h) BeePCo - 4-axis symmet-
ric environment

(i) HybaCo - 4-axis symmet-
ric environment

(j) StiCo - office
environment

(k) BeePCo - office environ-
ment

(l) HybaCo - office environ-
ment

Figure A.11: The distribution over time, in the different arenas, using 30 robots.
The coverage is illustrated in a gradient color scheme. A cell is coloured white, if it is
covered 100% of the run time and coloured black for a 0% coverage. The intermediate

percentages are coloured accordingly to the scale at the top of the figure.

Appendix A Extended Experiments Chapter 6 146

Coverage per Cell 100%0%

(a) StiCo - Environment
without obstacles

(b) BeePCo - Environment
without obstacles

(c) HybaCo - Environment
without obstacles

(d) StiCo - U-shape environ-
ment

(e) BeePCo - U-shape envi-
ronment

(f) HybaCo - U-shape envi-
ronment

(g) StiCo - 4-axis symmetric
environment

(h) BeePCo - 4-axis symmet-
ric environment

(i) HybaCo - 4-axis symmet-
ric environment

(j) StiCo - office
environment

(k) BeePCo - office environ-
ment

(l) HybaCo - office environ-
ment

Figure A.12: The distribution over time, in the different arenas, using 40 robots.
The coverage is illustrated in a gradient color scheme. A cell is coloured white, if it is
covered 100% of the run time and coloured black for a 0% coverage. The intermediate

percentages are coloured accordingly to the scale at the top of the figure.

Appendix B

Hardware Design and

Software/Hardware Repositories

This section gives a short overview over the hardware design, the required component

and the required software repositories. All mentioned repositories include a basic de-

scription for they usage, if needed. In order to connect the DWM1000 (UWB module)

to the crazyflie drone, we connect the SPI-interfaces of both devices together. Since

the regulator is not able to provide enough current to run the module, we add an addi-

tional 3.3v regulator (TPS731). Figure B.1 illustrates the complete schematic with all

required capacitors and resistors, all components are additionally listed in Table B.1.

The pcb-design is shown in Figure B.2. All files required to replicate the hardware are

downloadable under: https://github.com/bbroecker/dmrc_hardware. The altered

crazyflie driver including the developed communication protocol, can be found under

the following repository https://github.com/bbroecker/dbmr-crazyflie-firmware.

The additional crazyflie contoller can be found under https://github.com/bbroecker/

sl_crazyflie_dwm1000 and the software to train and test the neural network are stored

under: https://github.com/bbroecker/dmrc_training.

Schematic ID Description Value

R4 Resistor 100K
C1 Capacitor 10uF
C2 Capacitor 10nF
C3 Capacitor 10nF
TPS731 Regulator TPS731 3.3v regulator

Table B.1: Used components and their specification.

147

https://github.com/bbroecker/dmrc_hardware
https://github.com/bbroecker/dbmr-crazyflie-firmware
https://github.com/bbroecker/sl_crazyflie_dwm1000
https://github.com/bbroecker/sl_crazyflie_dwm1000
https://github.com/bbroecker/dmrc_training

Appendix B Hardware Design and Software Repositories 148

10uF

GND
GND

GND

GND

GND

GND

GND

10
0k

GND
GND

10nF

10nF

GND

C1

TX2
RX2
SCK
MISO
MOSI

N_IO1
WKUP
OW
VCOM
VUSB GND

IO4
IO3
IO2
IO1

SCL
SCA
TX1
RX1
VCC

EXTON

WAKEUP

RSTN

SYNC/P7

VDDAON

VIN

VIN

GND

PO
L/

P6

PH
A/

P5

P4 LE
DT

X/
P3

LE
D

R
X/

P2

LE
D

SF
D

/P
1

R
XO

K/
P0

G
N

D

MOSI

MISO

CLK

GND

IRQ/P8

CS

GND

GND

R
4

C2 IN1

GND2

EN3

OUT 5

NR 4
C3

U$3

TPS731_3.3

1

2

3 4

5

Figure B.1: Layout of the board. Files can be found under: https://github.com/

bbroecker/dmrc_hardware

ANTENNA
ANTENNA
ANTENNA

Figure B.2: Schematic showing the connections required to combine the crazyflie
with the DWM1000 module. (See repository at https://github.com/bbroecker/

dmrc_hardware)

https://github.com/bbroecker/dmrc_hardware
https://github.com/bbroecker/dmrc_hardware
https://github.com/bbroecker/dmrc_hardware
https://github.com/bbroecker/dmrc_hardware

Bibliography

[1] Mazda Ahmadi and Peter Stone, A multi-robot system for continuous area sweep-

ing tasks, Proc. of the IEEE Int. Conf. on Robotics and Automation, May 2006,

pp. 1724–1729.

[2] Bahriye Akay and Dervis Karaboga, Parameter tuning for the artificial bee colony

algorithm, pp. 608–619, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[3] , Parameter tuning for the artificial bee colony algorithm, Computational

Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems

(NgocThanh Nguyen, Ryszard Kowalczyk, and Shyi-Ming Chen, eds.), Lecture

Notes in Computer Science, vol. 5796, Springer Berlin Heidelberg, 2009, pp. 608–

619 (English).

[4] Isaac Amundson, Janos Sallai, Xenofon Koutsoukos, Akos Ledeczi, and Miklos

Maroti, Rf angle of arrival;based node localisation, Int. J. Sen. Netw. 9 (2011),

no. 3/4, 209–224.

[5] Tom M Apostol, Mathematical analysis; 2nd ed., Addison-Wesley Series in Math-

ematics, Addison-Wesley, Reading, MA, 1974.

[6] Nando de Freitas & Neil Gordon Arnaud Doucet (ed.), Sequential Monte Carlo

methods in practice, Springer, 2001.

[7] Farshad Arvin, Tomás Krajńık, Ali Emre Turgut, and Shigang Yue, CosΦ: Artifi-

cial pheromone system for robotic swarms research, 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IROS 2015, Hamburg, Germany,

September 28 - October 2, 2015, 2015, pp. 407–412.

[8] T. Balch and M. Hybinette, Behavior-based coordination of large-scale robot for-

mations, MultiAgent Systems, 2000. Proc. 4th Int. Conf. on, 2000, pp. 363–364.

[9] M. Basiri, F. Schill, D. Floreano, and P. Lima, Audio-based Relative Positioning

System for Multiple Micro Air Vehicle Systems, Robotics: Science and Systems

RSS2013, 2013.

[10] Randal Beard, Quadrotor Dynamics and Control Rev 0.1, http:

//scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2324&context=

facpub, 2008, [Online; accessed 21-September-2016].

149

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2324&context=facpub
http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2324&context=facpub
http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2324&context=facpub

Bibliography 150

[11] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling, The ar-

cade learning environment: An evaluation platform for general agents, CoRR

abs/1207.4708 (2012).

[12] M. Bernas and B. P laczek, Energy aware object localization in wireless sensor

network based on wi-fi fingerprinting, pp. 33–42, Springer International Publishing.

[13] P. Boonma and J. Suzuki, Monsoon: A coevolutionary multiobjective adaptation

framework for dynamic wireless sensor networks (Undetermined).

[14] A. Breitenmoser, M. Schwager, J. C. Metzger, R. Siegwart, and D. Rus, Voronoi

coverage of non-convex environments with a group of networked robots, Proc. of

the International Conference on Robotics and Automation (ICRA 10), May 2010,

pp. 4982–4989.

[15] Bastian Broecker, Ipek Caliskanelli, Karl Tuyls, Elizabeth Sklar, and Daniel

Hennes, Social insect-inspired multi-robot coverage, Proc. of Int. Conf. on Au-

tonomous Agents and Multiagent Systems (AAMAS), 2015.

[16] Bastian Broecker, Ipek Caliskanelli, Karl Tuyls, Elizabeth I. Sklar, and Daniel

Hennes, Hybrid insect-inspired multi-robot coverage in complex environments, To-

wards Autonomous Robotic Systems - 16th Annual Conference, TAROS 2015,

Liverpool, UK, September 8-10, 2015, Proceedings, 2015, pp. 56–68.

[17] I. Caliskanelli, B. Broecker, and K. Tuyls, Multi-robot coverage: A bee pheromone

signalling approach, Int. Conf. on Artificial Life and Intelligent Agents, 2014.

[18] I. Caliskanelli, J. Harbin, F Indrusiak, L. Polack, P. Mitchell, and D Chesmore,

Runtime optimisation in wsns for load balancing using pheromone signalling, NE-

SEA, 2012. 3rd IEEE Int. Conf. on, Dec. 2012.

[19] I. Caliskanelli and L. Indrusiak, Search-based parameter tuning on application-level

load balancing for distributed embedded systems, Proc. of the 11th IEEE/IFIP Int.

Conf. on Embedded and Ubiquitous Computing (EUC), 2013.

[20] I. Caliskanelli and L. S. Indrusiak, Using mobile robotic agents to increase service

availability and extend network lifetime on wsrns, 2014 12th IEEE International

Conference on Industrial Informatics (INDIN), July 2014, pp. 388–393.

[21] , Using mobile robotic agents to increase service availability and extend

network lifetime on wsrns, 2014 12th IEEE International Conference on Industrial

Informatics (INDIN), July 2014, pp. 388–393.

[22] Ipek Caliskanelli, James Robert Harbin, Leandro Soares Indrusiak, Paul Daniel

Mitchell, Fiona A C Polack, and David Chesmore, Bio-inspired load balancing in

large-scale wsns using pheromone signalling, Int. Journal of Distributed Sensor

Networks (2013).

Bibliography 151

[23] K Cheng, TS Collett, A Pickhard, and R Wehner, The use of visual landmarks

by honeybees: Bees weight landmarks according to their distance from the goal,

Journal of Comparative Physiology A 161 (1987), no. 3, 469–475.

[24] Matthew Collett, Thomas S Collett, Sonja Bisch, and Rüdiger̈ıœ Wehner, Local

and global vectors in desert ant navigation, Nature 394 (1998), no. 6690, 269–272.

[25] Matthew Collett, Duane Harland, and Thomas S Collett, The use of landmarks

and panoramic context in the performance of local vectors by navigating honeybees,

The Journal of Experimental Biology 205 (2002), 807–814.

[26] N. Correll and A. Martinoli, Collective inspection of regular structures using a

swarm of miniature robots, Experimental Robotics IX (Jr. Ang, MarceloH. and

Oussama Khatib, eds.), Springer Tracts in Advanced Robotics, vol. 21, Springer

Berlin Heidelberg, 2006, pp. 375–386 (English).

[27] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, Coverage control for mobile

sensing networks, Robotics and Automation, IEEE Transactions on 20 (2004),

no. 2, 243–255.

[28] M. Dorigo, Optimization, learning and natural algorithms, Thesis report, Politec-

nico di Milano, Italy, 1992.

[29] M. Dorigo, M. Birattari, and T. Stutzle, Ant colony optimization, Computational

Intelligence Magazine, IEEE 1 (2006), no. 4, 28 –39.

[30] , Ant colony optimization: Artificial ants as a computational intelligence

technique, Computational Intelligence Magazine, IEEE 1 (2006), no. 4, 28–39.

[31] M. Dorigo and T. Stützle, Ant colony optimization, A Bradford book, BRAD-

FORD BOOK, 2004.

[32] Marco Dorigo and Christian Blumb, Ant colony optimization theory: A survey,

Theoretical Computer Science 344 (2005), 243–278.

[33] Marco Dorigo and Av FD Roosevelt, Swarm robotics, Special Issue”, Autonomous

Robots, Citeseer, 2004.

[34] Stuart Dreyfus, The numerical solution of variational problems, Journal of Math-

ematical Analysis and Applications 5 (1962), no. 1, 30 – 45.

[35] Nasser A. El-Sherbeny, Vehicle routing with time windows: An overview of exact,

heuristic and metaheuristic methods, Journal of King Saud University - Science

22 (2010), no. 3, 123 – 131.

[36] Y. Elor and A. M. Bruckstein, Multi-a(ge)nt graph patrolling and partitioning,

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and

Intelligent Agent Technology, vol. 2, Sept 2009, pp. 52–57.

Bibliography 152

[37] Aaron Jaech et al., Domain adaptation of recurrent neural networks for natural

language understanding, CoRR (2016).

[38] B. Ranjbar-Sahraei et al., Bio-inspired multi-robot systems, Biomimetic Technolo-

gies, 2015, pp. 273 – 299.

[39] D. Hennes et al., Multi-robot collision avoidance with localization uncertainty, Pro-

ceedings of AAMAS 2012, 2012, pp. 147–154.

[40] Volodymyr Mnih et al., Playing atari with deep reinforcement learning, vol.

abs/1312.5602, 2013.

[41] Paolo Fiorini and Zvi Shiller, Motion planning in dynamic environments using

velocity obstacles, The International Journal of Robotics Research 17 (1998), no. 7,

760–772.

[42] E. Folgado, M. Rincn, J.R. lvarez, and J. Mira, A multi-robot surveillance system

simulated in gazebo, Nature Inspired Problem-Solving Methods in Knowledge En-

gineering (Jos Mira and JosR. lvarez, eds.), Lecture Notes in Computer Science,

vol. 4528, Springer Berlin Heidelberg, 2007, pp. 202–211 (English).

[43] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun, Monte carlo

localization: Efficient position estimation for mobile robots, Proceedings of the

Sixteenth National Conference on Artificial Intelligence and the Eleventh Inno-

vative Applications of Artificial Intelligence Conference Innovative Applications

of Artificial Intelligence (Menlo Park, CA, USA), AAAI ’99/IAAI ’99, American

Association for Artificial Intelligence, 1999, pp. 343–349.

[44] R. Fujisawa, H. Imamura, T. Hashimoto, and F. Matsuno, Communication using

pheromone field for multiple robots, Intelligent Robots and Systems, 2008. IROS

2008. IEEE/RSJ International Conference on, Sept 2008, pp. 1391–1396.

[45] Yoav Gabriely and Elon Rimon, Spanning-tree based coverage of continuous areas

by a mobile robot, Annals of Mathematics and Artificial Intelligence 31 (2001),

no. 1-4, 77–98 (English).

[46] Yoav Gabriely and Elon Rimon, Competitive on-line coverage of grid environments

by a mobile robot, Computational Geometry 24 (2003), no. 3, 197 – 224.

[47] D. W. Gage, Command control for many-robot systems, Naval Command control

and ocean surveillance centre rtd San Diego CA, 1992.

[48] Arnaud Glad, Olivier Simonin, Olivier Buffet, and François Charpillet, Theoretical

study of ant-based algorithms for multi-agent patrolling, Proceedings of the 2008

Conference on ECAI 2008: 18th European Conference on Artificial Intelligence

(Amsterdam, The Netherlands, The Netherlands), IOS Press, 2008, pp. 626–630.

Bibliography 153

[49] S. Goss and J.L. Deneubourg, Harvesting by a group of robots, Proceedings of the

First European Conference on Artificial Life, 1992, pp. 195–204.

[50] R. Gross, M. Bonani, F. Mondada, and M. Dorigo, Autonomous self-assembly in

swarm-bots, IEEE Transactions on Robotics 22 (2006), no. 6, 1115–1130.

[51] Yi Guo and Zhihua Qu, Coverage control for a mobile robot patrolling a dynamic

and uncertain environment, Intelligent Control and Automation, 2004. WCICA

2004. Fifth World Congress on, vol. 6, June 2004, pp. 4899–4903 Vol.6.

[52] F. Gustafsson and F. Gunnarsson, Positioning using time-difference of arrival

measurements, Acoustics, Speech, and Signal Processing, 2003. Proceedings.

(ICASSP '03). 2003 IEEE International Conference on, vol. 6, IEEE, April

2003, pp. VI–553–6 vol.6.

[53] Noam Hazon and Gal A. Kaminka, On redundancy, efficiency, and robustness in

coverage for multiple robots, Robotics and Autonomous Systems 56 (2008), no. 12,

1102 – 1114, Towards Autonomous Robotic Systems 2008: Mobile Robotics in the

{UK} 10th British Conference on Mobile Robotics - Towards Autonomous Robotic

Systems (TAROS 2007).

[54] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl Tuyls, Multi-robot colli-

sion avoidance with localization uncertainty, Proceedings of the 11th International

Conference on Autonomous Agents and Multiagent Systems - Volume 1 (Rich-

land, SC), AAMAS ’12, International Foundation for Autonomous Agents and

Multiagent Systems, 2012, pp. 147–154.

[55] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9

(1997), no. 8, 1735–1780.

[56] Rosen Ivanov, Indoor navigation system for visually impaired, Proceedings of the

11th International Conference on Computer Systems and Technologies and Work-

shop for PhD Students in Computing on International Conference on Computer

Systems and Technologies (New York, NY, USA), CompSysTech ’10, ACM, 2010,

pp. 143–149.

[57] Boyoon Jung and GauravS. Sukhatme, Tracking targets using multiple robots: The

effect of environment occlusion, Autonomous Robots 13 (2002), no. 3, 191–205

(English).

[58] D. Karaboga and B. Basturk, On the performance of artificial bee colony (ABC)

algorithm, Applications Soft Computing 8 (2008), no. 1, 687–697.

[59] Dervis Karaboga, Artificial bee colony algorithm, scholarpedia 5 (2010), no. 3,

6915.

Bibliography 154

[60] Dervis Karaboga and Bahriye Basturk, A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (abc) algorithm, Journal of

Global Optimization 39 (2007), no. 3, 459–471.

[61] Sanza T. Kazadi, Swarm engineering, Ph.D. thesis, Pasadena, CA, USA, 2000,

AAI9972612.

[62] M. Kempka and et al., Vizdoom: A doom-based AI research platform for visual

reinforcement learning, CoRR (2016).

[63] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots,

Robotics and Automation. Proc. 1985 IEEE Int. Conf. on, vol. 2, Mar. 1985,

pp. 500–505.

[64] Alexander Kleiner, Mapping and Exploration for Search and Rescue with Humans

and Mobile Robots, Tech. report, Link”opings universitet, Department of Com-

puter and Information Science, 2009, This is a Ph.D. thesis originally defended at

University of Freiburg.

[65] Richard Kĺıma, Daan Bloembergen, Rahul Savani, Karl Tuyls, Daniel Hennes,

and Dario Izzo, Space debris removal: A game theoretic analysis, Games 7 (2016),

no. 3, 20.

[66] Mey Lean Kronemann and Verena V. Hafner, Lumibots - making emergence gras-

pable in a swarm of robots, The ACM Designing Interactive Systems Conference,

2010, pp. 408–411.

[67] Mauri Kuorilehto, Marko Hännikäinen, and Timo D. Hämäläinen, A survey of

application distribution in wireless sensor networks, EURASIP J. Wirel. Commun.

Netw. 2005 (2005), no. 5, 774–788.

[68] Dimitrios Lambrinos, Ralf Mller, Thomas Labhart, Rolf Pfeifer, and Rdiger

Wehner, A mobile robot employing insect strategies for navigation, Robotics and

Autonomous Systems 30 (2000), no. 12, 39 – 64.

[69] N.P.-P.M. Lemmens, Bee-inspired distributed optimization, (2011).

[70] Nyree Lemmens, Steven De Jong, Karl Tuyls, and Ann Nowe, A bee algorithm

for multi-agent systems: Recruitment and navigation combined, In Proceedings of

ALAG, an AAMAS workshop, 2007.

[71] Nyree Lemmens and Karl Tuyls, Stigmergic landmark optimization, Advances in

Complex Systems 15 (2012), no. 8.

[72] Jun S. Liu and Rong Chen, Sequential monte carlo methods for dynamic systems,

Journal of the American Statistical Association 93 (1998), 1032–1044.

Bibliography 155

[73] P. Long, W. Liu, and J. Pan, Deep-learned collision avoidance policy for distributed

multiagent navigation, IEEE Robotics and Automation Letters 2 (2017), no. 2,

656–663.

[74] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-

ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland,

Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,

Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hass-

abis, Human-level control through deep reinforcement learning, Nature 518 (2015),

no. 7540, 529–533.

[75] Shervin Nouyan and Marco Dorigo, Chain based path formation in swarms of

robots, Ant Colony Optimization and Swarm Intelligence (Berlin, Heidelberg)

(Marco Dorigo, Luca Maria Gambardella, Mauro Birattari, Alcherio Martinoli,

Riccardo Poli, and Thomas Stützle, eds.), Springer Berlin Heidelberg, 2006,

pp. 120–131.

[76] Eli Packer, Robust geometric computing and optimal visibility coverage, Ph.D. the-

sis, Stony Brook, NY, USA, 2008, AAI3338238.

[77] C.E. Perkins and E.M. Royer, Ad-hoc on-demand distance vector routing, Mo-

bile Computing Systems and Applications, 1999. Proc. WMCSA ’99. 2nd IEEE

Workshop on, feb 1999, pp. 90 –100.

[78] A Pirzadeh and W. Snyder, A unified solution to coverage and search in explored

and unexplored terrains using indirect control, Robotics and Automation, 1990.

Proc., 1990 IEEE Int.l Conf. on, May 1990, pp. 2113–2119 vol.3.

[79] R. L. Jhala P.V. Savsani, Optimal motion planning for a robot arm by using ar-

tificial bee colony (abc) algorithm, International Journal of Modern Engineering

Research (IJMER) www.ijmer.com Vol. 2, Issue. 5, Sep.-Oct. 2012 p (2012).

[80] B. Ranjbar-Sahraei, K. Tuyls, I. Caliskanelli, B. Broeker, D. Claes, S. Alers, and

G. Weiss, Bio-inspired multi-robot systems, Biomimetic Technologies (Trung Dung

Ngo, ed.), Woodhead Publishing Series in Electronic and Optical Materials, Wood-

head Publishing, 2015, pp. 273 – 299.

[81] B. Ranjbar-Sahraei, G. Weiss, and A. Nakisaee, A multi-robot coverage approach

based on stigmergic communication, Multiagent System Technologies, Lecture

Notes in Computer Science, vol. 7598, Springer, 2012, pp. 126–138.

[82] Bijan Ranjbar-Sahraei, Gerhard Weiss, and Ali Nakisaee, An adaptive stigmergic

coverage approach for robot team, 24th Benelux Conference on Artificial Intelli-

gence (BNAIC), 2012, pp. 210–217.

Bibliography 156

[83] Bijan Ranjbar-Sahraei, Gerhard Weiss, and Ali Nakisaee, Stigmergic coverage al-

gorithm for multi-robot systems (demonstration), Proc. of the 11th Int. Conf. AA-

MAS, vol. 3, 2012, pp. 1497–1498.

[84] J. Roberts and et al., 3-d relative positioning sensor for indoor flying robots, Au-

tonomous Robots 33 (2012), no. 1-2, 5–20 (English).

[85] M. B. V. Roberts, Biology: a functional approach, Nelson, 1986.

[86] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal, Programmable self-

assembly in a thousand-robot swarm, Science 345 (2014), no. 6198, 795–799.

[87] M. H. Saffari and M.J. Mahjoob, Bee colony algorithm for real-time optimal path

planning of mobile robots, Soft Computing, Computing with Words and Percep-

tions in System Analysis, Decision and Control, 2009. ICSCCW 2009. Fifth Inter-

national Conference on, Sept 2009, pp. 1–4.

[88] Erol Şahin, Swarm robotics: From sources of inspiration to domains of application,

Swarm robotics, Springer, 2005, pp. 10–20.

[89] RashmiRanjan Sahoo, AbdurRahaman Sardar, Moutushi Singh, Sudhabindu Ray,

and SubirKumar Sarkar, Trust based secure and energy efficient clustering in wire-

less sensor network: A bee mating approach, Pattern Recognition and Machine

Intelligence (Pradipta Maji, Ashish Ghosh, M.Narasimha Murty, Kuntal Ghosh,

and SankarK. Pal, eds.), Lecture Notes in Computer Science, vol. 8251, Springer

Berlin Heidelberg, 2013, pp. 100–107 (English).

[90] H. Sak and F. Beaufays, Long short-term memory based recurrent neural network

architectures for large vocabulary speech recognition, CoRR (2014).

[91] Muhammad Saleem and Muddassar Farooq, Beesensor: A bee-inspired power

aware routing protocol for wireless sensor networks, Applications of Evolution-

ary Computing (Mario Giacobini, ed.), Lecture Notes in Computer Science, vol.

4448, Springer Berlin Heidelberg, 2007, pp. 81–90.

[92] Jürgen Schmidhuber, Deep learning in neural networks: An overview, CoRR

abs/1404.7828 (2014).

[93] Eric Schneider, Elizabeth I. Sklar, Simon Parsons, and A. Tuna Özgelen, Auction-

based task allocation for multi-robot teams in dynamic environments, pp. 246–257,

Springer International Publishing, Cham, 2015.

[94] F.E. Schneider, D. Wildermuth, and H.-L. Wolf, Motion coordination in formations

of multiple mobile robots using a potential field approach, Distributed Autonomous

Robotic Systems 4 (LynneE. Parker, George Bekey, and Jacob Barhen, eds.),

Springer Japan, 2000, pp. 305–314 (English).

Bibliography 157

[95] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine, Decentralized, adaptive

coverage control for networked robots, The International Journal of Robotics Re-

search 28 (2009), no. 3, 357–375.

[96] Mac Schwager, Jean-Jacques Slotine, and Daniela Rus, Unifying geometric, prob-

abilistic, and potential field approaches to multi-robot coverage control, pp. 21–38,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[97] J. Senthilkumar and M. Chandrasekaran, Improving the performance of wireless

sensor network using bee’s mating intelligence, 55 (2011).

[98] Weihua Sheng, Qingyan Yang, Jindong Tan, and Ning Xi, Distributed multi-robot

coordination in area exploration, Robotics and Autonomous Systems 54 (2006),

no. 12, 945 – 955.

[99] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, Independent navigation

of multiple mobile robots with hybrid reciprocal velocity obstacles, 2009 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Oct 2009, pp. 5917–

5922.

[100] Richard S. Sutton and Andrew G. Barto, Introduction to reinforcement learning,

MIT Press, Cambridge, MA, USA, 1998.

[101] Guy Theraulaz and Eric Bonbeau, A brief history of stigmergy, Artif. Life 5 (1999),

no. 2, 97–116.

[102] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics (intelligent robotics and

autonomous agents), The MIT Press, 2005.

[103] J. van den Berg, Ming Lin, and D. Manocha, Reciprocal velocity obstacles for real-

time multi-agent navigation, 2008 IEEE International Conference on Robotics and

Automation, May 2008, pp. 1928–1935.

[104] Karl von Frisch, The dance language and orientation of bees, Harvard University

Press, 1993.

[105] IA Wagner, M. Lindenbaum, and AM. Bruckstein, Distributed covering by ant-

robots using evaporating traces, Robotics and Automation, IEEE Transactions on

15 (1999), no. 5, 918–933.

[106] HorstF. Wedde, Muddassar Farooq, and Yue Zhang, Beehive: An efficient fault-

tolerant routing algorithm inspired by honey bee behavior, Ant Colony Optimization

and Swarm Intelligence, LNCS, vol. 3172, Springer Berlin Heidelberg, 2004, pp. 83–

94.

[107] A F T Winfield and Julien Nembrini, Safety in numbers: Fault tolerance in robot

swarms, International Journal on Modelling Identification and Control 1 (2006),

no. 1, 30–37.

Bibliography 158

[108] Alan F. T. Winfield, Christopher J. Harper, and Julien Nembrini, Towards depend-

able swarms and a new discipline of swarm engineering, Swarm Robotics (Berlin,

Heidelberg) (Erol Şahin and William M. Spears, eds.), Springer Berlin Heidelberg,

2005, pp. 126–142.

[109] Vladimir Yanovski, Israel A. Wagner, and Alfred M. Bruckstein, A distributed

ant algorithm for protect efficiently patrolling a network, Algorithmica 37 (2003),

no. 3, 165–186.

[110] Robert Zlot, Anthony Stentz, M. Bernardine Dias, and Scott Thayer, Multi-robot

exploration controlled by a market economy., ICRA, IEEE, 2002, pp. 3016–3023.

	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Bio Inspired Multi-robot Coordination
	1.2 Research Questions and Contributions
	1.3 Thesis Outline

	2 Preliminaries
	2.1 Bio Inspiration
	2.1.1 Stigmergic Behaviour of Ants
	2.1.2 Foraging Behaviour of Honeybees
	2.1.3 Pheromone Signalling Behaviour of Honeybees

	2.2 Neural Networks
	2.2.1 Basic Concept
	2.2.2 Topologies
	Feed-Forward Network
	Recurrent Neural Network

	2.2.3 Training
	2.2.4 Long Short-Term Memory

	2.3 Reinforcements Learning
	2.3.1 Overview
	2.3.2 Deep Reinforcement Learning

	2.4 Monte Carlo Localisation
	2.5 UWB Distance Estimation
	2.6 Quadrotor Control
	2.6.1 MAV Coordinate Frames
	2.6.2 Quadcopter System Model
	2.6.3 Feedback Control
	2.6.4 Quadrotor Angular Velocity Control using PID
	2.6.5 Cascaded PID Control

	2.7 Conclusion

	3 Related Work
	3.1 Coordination and Coverage Techniques
	3.2 Ant Inspired Techniques
	3.3 Bee Inspired Techniques
	3.4 StiCo
	3.4.1 StiCo Principle

	3.5 Collision Avoidance
	3.6 Conclusion

	4 Bee Pheromone Based Coverage
	4.1 Introduction
	4.2 Pheromone Signalling Based Coverage Technique
	4.3 Simulation
	4.3.1 Structure
	4.3.2 Ant Pheromone Simulation

	4.4 Evaluation Environment and Experimental Results
	4.4.1 Coverage Metrices
	4.4.2 Environment
	4.4.3 StiCo Parameters
	4.4.4 Experimental Results

	4.5 Conclusions

	5 Hybrid Bee and Ant Inspired Coverage
	5.1 Comparison Between StiCo and BeePCo
	5.1.1 Characteristics Differences Between BeePCo and StiCo
	5.1.2 StiCo Coverage Performance
	5.1.3 BeePCo Coverage Performance

	5.2 HybaCo: Hybrid Bee and Ant Pheromone Coverage
	5.3 Experimental Evaluation
	5.3.1 Experimental Setup
	5.3.2 Sensor Coverage
	5.3.3 Distribution Over Time
	5.3.4 Ant and Bee Pheromone Usage
	5.3.5 Pheromone-Decay Parameter Sensitivity and Tuning

	5.4 Discussion
	5.5 Conclusions

	6 Insect-Inspired Multi-Robot Coverage in Complex Environments
	6.1 Environments
	6.2 Experimental Evaluation
	6.2.1 Experimental Setup
	6.2.2 Sensor Coverage
	6.2.3 Distribution Over Time

	6.3 Discussion
	6.4 Conclusions

	7 Distance-based Multi-robot Coordination on Pocket Drones
	7.1 Introduction
	7.2 Drone
	7.2.1 Specifications
	7.2.2 Velocity estimation and control

	7.3 Ultra Wide-Band Distance Calculation
	7.3.1 Hardware
	7.3.2 UWB Noise Model
	7.3.3 Communication Protocol

	7.4 Model
	7.4.1 Terminology and Assumptions
	7.4.2 Recurrent Network Model
	7.4.3 Particle Filter
	7.4.4 Deep Q-Network

	7.5 Training
	7.5.1 Simulation
	7.5.2 Frame Skipping
	7.5.3 Recurrent Neural Network
	7.5.4 Deep Q-Network

	7.6 Simulation Experiments
	7.6.1 Evaluated Configurations
	7.6.2 Pose Estimation
	7.6.3 Navigation Performance

	7.7 Computational Overhead
	7.8 Real-world Experiments
	7.8.1 Position Accuracy
	7.8.2 Navigation

	7.9 Discussion
	7.10 Conclusion

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Work
	8.3 Publications

	A Extended Experiments Chapter 6
	A.1 Coverage
	A.2 Distribution over time

	B Hardware Design and Software/Hardware Repositories
	Bibliography

