258 research outputs found

    New infrared star clusters in the Northern and Equatorial Milky Way with 2MASS

    Get PDF
    We carried out a survey of infrared star clusters and stellar groups on the 2MASS J, H and K_s all-sky release Atlas in the Northern and Equatorial Milky Way (350 < l < 360, 0 < l < 230). The search in this zone complements that in the Southern Milky Way (Dutra et al. 2003a). The method concentrates efforts on the directions of known optical and radio nebulae. The present study provides 167 new infrared clusters, stellar groups and candidates. Combining the two studies for the whole Milky Way, 346 infrared clusters, stellar groups and candidates were discovered, whereas 315 objects were previously known. They constitute an important new sample for future detailed studies.Comment: Accepted to Astronomy and Astrophysic

    Open cluster survival within the solar circle: Teutsch145 and Teutsch146

    Get PDF
    Teutsch145 and Teutsch146 are shown to be open clusters (OCs) orbiting well inside the Solar circle, a region where several dynamical processes combine to disrupt most OCs on a time-scale of a few 10^8yrs. BVI photometry from the GALILEO telescope is used to investigate the nature and derive the fundamental and structural parameters of the optically faint and poorly-known OCs Teutsch145 and 146. These parameters are computed by means of field-star decontaminated colour-magnitude diagrams (CMDs) and stellar radial density profiles (RDPs). Cluster mass estimates are made based on the intrinsic mass functions (MFs). We derive the ages 200+100-50Myr and 400+/-100Myr, and the distances from the Sun 2.7+/-0.3kpc and 3.8+/-0.2kpc, respectively for Teutsch145 and 146. Their integrated apparent and absolute magnitudes are m_V ~ 12.4, m_V ~ 13.3, M_V ~- 5.6 and M_V ~- 5.3. The MFs (detected for stars with m>1Msun) have slopes similar to Salpeter's IMF. Extrapolated to the H-burning limit, the MFs would produce total stellar masses of ~1400Msun, typical of relatively massive OCs. Both OCs are located deep into the inner Galaxy and close to the Crux-Scutum arm. Since cluster-disruption processes are important, their primordial masses must have been higher than the present-day values. The conspicuous stellar density excess observed in the innermost bin of both RDPs might reflect the dynamical effects induced by a few 10^8yrs of external tidal stress.Comment: 8 pagas with 9 figs. Accepted by MNRA

    Prenatal stress exposure is associated with increased dyspnea perception in adulthood

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dyspnoea is the aversive cardinal symptom in various prevalent conditions such as respiratory, cardiovascular and neuromuscular diseases and is associated with great individual and socioeconomic burden [1]. Over the past years, several physiological and also psychological factors have been demonstrated to affect the perception of dyspnoea [1, 2]. For example, high levels of anxiety in adulthood were associated with increased dyspnoea perception in patients with asthma or chronic obstructive pulmonary disease (COPD), but also in healthy controls [2]. Moreover, adverse, separation-related experiences in childhood were linked to the subsequent development of increased anxiety and dyspnoea [3]. However, the effects of adverse experiences in early, prenatal life on dyspnoea perception remain widely unknown, although prenatal exposure to maternal stress and anxiety has convincingly been related to the development of other health and behavioural problems later in life, including impairments of the respiratory control system and high anxiety levels [4–9]. Therefore, this study investigated the relationship between prenatal exposure to maternal stress and the perception of dyspnoea in adulthood 28 years later

    Galaxy Zoo: Reproducing Galaxy Morphologies Via Machine Learning

    Get PDF
    We present morphological classifications obtained using machine learning for objects in SDSS DR6 that have been classified by Galaxy Zoo into three classes, namely early types, spirals and point sources/artifacts. An artificial neural network is trained on a subset of objects classified by the human eye and we test whether the machine learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours and parameters associated with profile-fitting are reasonable in separating the objects into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as concentration and texture. The adaptive moments, concentration and texture parameters alone cannot distinguish between early type galaxies and the point sources/artifacts. Using a set of twelve parameters, the neural network is able to reproduce the human classifications to better than 90% for all three morphological classes. We find that using a training set that is incomplete in magnitude does not degrade our results given our particular choice of the input parameters to the network. We conclude that it is promising to use machine- learning algorithms to perform morphological classification for the next generation of wide-field imaging surveys and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes.Comment: 13 Pages, 5 figures, 10 tables. Accepted for publication in MNRAS. Revised to match accepted version

    The Calar Alto Deep Imaging Survey: K-band Galaxy Number Counts

    Get PDF
    We present K-band number counts for the faint galaxies in the Calar Alto Deep Imaging Survey (CADIS). We covered 4 CADIS fields, a total area of 0.2deg^2, in the broad band filters B, R and K. We detect about 4000 galaxies in the K-band images, with a completeness limit of K=19.75mag, and derive the K-band galaxy number counts in the range of 14.25 < K < 19.75mag. This is the largest medium deep K-band survey to date in this magnitude range. The B- and R-band number counts are also derived, down to completeness limits of B=24.75mag and R=23.25mag. The K-selected galaxies in this magnitude range are of particular interest, since some medium deep near-infrared surveys have identified breaks of both the slope of the K-band number counts and the mean B-K color at K=17\sim18mag. There is, however, a significant disagreement in the K-band number counts among the existing surveys. Our large near-infrared selected galaxy sample allows us to establish the presence of a clear break in the slope at K=17.0mag from dlogN/dm = 0.64 at brighter magnitudes to dlogN/dm = 0.36 at the fainter end. We construct no-evolution and passive evolution models, and find that the passive evolution model can simultaneously fit the B-, R- and K-band number counts well. The B-K colors show a clear trend to bluer colors for K > 18mag. We also find that most of the K=18-20mag galaxies have a B-K color bluer than the prediction of a no-evolution model for an L_* Sbc galaxy, implying either significant evolution, even for massive galaxies, or the existence of an extra population of small galaxies.Comment: Accepted for A&A, 10 pages, 7 figure

    Star Clusters

    Full text link
    This review concentrates almost entirely on globular star clusters. It emphasises the increasing realisation that few of the traditional problems of star cluster astronomy can be studied in isolation: the influence of the Galaxy affects dynamical evolution deep in the core, and the spectrum of stellar masses; in turn the evolution of the core determines the highest stellar densities, and the rate of encounters. In this way external tidal effects indirectly influence the formation and evolution of blue stragglers, binary pulsars, X-ray sources, etc. More controversially, the stellar density appears to influence the relative distribution of normal stars. In the opposite sense, the evolution of individual stars governs much of the early dynamics of a globular cluster, and the existence of large numbers of primordial binary stars has changed important details of our picture of the dynamical evolution. New computational tools which will become available in the next few years will help dynamical theorists to address these questions.Comment: 10 pages, 3 figures, Te

    "Safe" Coulomb Excitation of 30Mg

    Full text link
    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin nat-Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation gamma ray yields the B(E2; 0+ -> 2+) value of 30Mg was determined to be 241(31) e2fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg lies still outside the ``island of inversion''

    Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited

    Get PDF
    BACKGROUND: Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static "contact first" model). The second model is based on the dynamics of double strand break ends during repair processes (dynamic "breakage first" model). Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL translocation mechanism. METHODS: Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. RESULTS: In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value < 0.0001). According to the static "contact first" model of the translocation mechanism, a minimal distance between loci would indicate a greater probability of the occurrence of t(11;19)(q23;p13.3) compared to t(4;11)(q21;q23). However this is in contradiction to the epidemiology of 11q23 translocation. CONCLUSION: The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static "contact first" model of translocation. The recently proposed dynamic "breakage first" model offers an attractive alternative explanation

    Timing of Subsequent Fractures after an Initial Fracture

    Get PDF
    A prior fracture is a well-documented risk factor for a subsequent fracture and it doubles the risk of subsequent fractures. Few studies have investigated the time that elapses between the initial and subsequent fracture. These studies show that the subsequent fracture risk is not constant, but fluctuates over time. The risk of subsequent vertebral, hip, and nonvertebral non-hip fractures is highest immediately after initial hip, clinical, and radiographic vertebral fractures and nonvertebral fractures and declines afterward, regardless of gender, age, and initial fracture location. These studies indicate the need for early action after an initial fracture with medical interventions that have an effect within a short term to reduce the preventable risks of subsequent fractures
    corecore