340 research outputs found
Acoustic Phonon-Assisted Resonant Tunneling via Single Impurities
We perform the investigations of the resonant tunneling via impurities
embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the
characteristics measured at 30mK, the contribution of individual donors
is resolved and the fingerprints of phonon assistance in the tunneling process
are seen. The latter is confirmed by detailed analysis of the tunneling rates
and the modeling of the resonant tunneling contribution to the current.
Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge
singularities are observed.Comment: accepted in Phys. Rev.
Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells
Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins
Properties of monocytes generated from haematopoietic CD34+ stem cells from bone marrow of colon cancer patients
Monocytes exhibit direct and indirect antitumour activities and may be potentially useful for various forms of adoptive cellular immunotherapy of cancer. However, blood is a limited source of them. This study explored whether monocytes can be obtained from bone marrow haematopoietic CD34(+) stem cells of colon cancer patients, using previously described protocol of expansion and differentiation to monocytes of cord blood-derived CD34(+) haematopoietic progenitors. Data show that in two-step cultures, the yield of cells was increased approximately 200-fold, and among these cells, up to 60 % of CD14(+) monocytes were found. They consisted of two subpopulations: CD14(++)CD16(+) and CD14(+)CD16(−), at approximately 1:1 ratio, that differed in HLA-DR expression, being higher on the former. No differences in expression of costimulatory molecules were observed, as CD80 was not detected, while CD86 expression was comparable. These CD14(+) monocytes showed the ability to present recall antigens (PPD, Candida albicans) and neoantigens expressed on tumour cells and tumour-derived microvesicles (TMV) to autologous CD3(+) T cells isolated from the peripheral blood. Monocytes also efficiently presented the immunodominant HER-2/neu(369–377) peptide (KIFGSLAFL), resulting in the generation of specific cytotoxic CD8(+) T lymphocytes (CTL). The CD14(++)CD16(+) subset exhibited enhanced cytotoxicity, though nonsignificant, towards tumour cells in vitro. These observations indicate that generation of monocytes from CD34(+) stem cells of cancer patients is feasible. To our knowledge, it is the first demonstration of such approach that may open a way to obtain autologous monocytes for alternative forms of adaptive and adoptive cellular immunotherapy of cancer
Aptamer-based field-effect biosensor for tenofovir detection
During medical treatment it is critical to maintain the circulatory concentration of drugs within their therapeutic range. A novel biosensor is presented in this work to address the lack of a reliable point-of-care drug monitoring system in the market. The biosensor incorporates high selectivity and sensitivity by integrating aptamers as the recognition element and field-effect transistors as the signal transducer. The drug tenofovir was used as a model small molecule. The biointerface of the sensor is a binary self-assembled monolayer of specific thiolated aptamer and 6-mercapto-1-hexanol (MCH), whose ratio was optimized by electrochemical impedance spectroscopy measurements to enhance the sensitivity towards the specific target. Surface plasmon resonance, performed under different buffer conditions, shows optimum specific and little non-specific binding in phosphate buffered saline. The dose-response behavior of the field-effect biosensor presents a linear range between 1 nM and 100 nM of tenofovir and a limit of detection of 1.2 nM. Two non-specific drugs and one non-specific aptamer, tested as stringent control candidates, caused negligible responses. The applications were successfully extended to the detection of the drug in human serum. As demonstrated by impedance measurements, the aptamer-based sensors can be used for real-time drug monitoring
BDNF-Live-Exon-Visualization (BLEV) Allows Differential Detection of BDNF Transcripts in vitro and in vivo
Bdnf exon-IV and exon-VI transcripts are driven by neuronal activity and are involved in pathologies related to sleep, fear or memory disorders. However, how their differential transcription translates activity changes into long-lasting network changes is elusive. Aiming to trace specifically the network controlled by exon-IV and -VI derived BDNF during activity-dependent plasticity changes, we generated a transgenic reporter mouse for BDNF-live-exon-visualization (BLEV), in which expression of Bdnf exon-IV and -VI can be visualized by co-expression of CFP and YFP. CFP and YFP expression was differentially activated and targeted in cell lines, primary cultures and BLEV reporter mice without interfering with BDNF protein synthesis. CFP and YFP expression, moreover, overlapped with BDNF protein expression in defined hippocampal neuronal, glial and vascular locations in vivo. So far, activity-dependent BDNF cannot be explicitly monitored independent of basal BDNF levels. The BLEV reporter mouse therefore provides a new model, which can be used to test whether stimulus-induced activity-dependent changes in BDNF expression are instrumental for long-lasting plasticity modifications
Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles
Microvesicles are plasma membrane-derived vesicles released into the extracellular environment by a variety of cell types. Originally characterized from platelets, microvesicles are a normal constituent of human plasma, where they play an important role in maintaining hematostasis. Microvesicles have been shown to transfer proteins and RNA from cell to cell and they are also believed to play a role in intercellular communication. We characterized the RNA and protein content of embryonic stem cell microvesicles and show that they can be engineered to carry exogenously expressed mRNA and protein such as green fluorescent protein (GFP). We demonstrate that these engineered microvesicles dock and fuse with other embryonic stem cells, transferring their GFP. Additionally, we show that embryonic stem cells microvesicles contain abundant microRNA and that they can transfer a subset of microRNAs to mouse embryonic fibroblasts in vitro. Since microRNAs are short (21–24 nt), naturally occurring RNAs that regulate protein translation, our findings open up the intriguing possibility that stem cells can alter the expression of genes in neighboring cells by transferring microRNAs contained in microvesicles. Embryonic stem cell microvesicles may be useful therapeutic tools for transferring mRNA, microRNAs, protein, and siRNA to cells and may be important mediators of signaling within stem cell niches
EUROmediCAT signal detection: an evaluation of selected congenital anomaly-medication associations
To evaluate congenital anomaly (CA)-medication exposure associations produced by the new EUROmediCAT signal detection system and determine which require further investigation.
Data from 15 EUROCAT registries (1995-2011) with medication exposures at the chemical substance (5th level of Anatomic Therapeutic Chemical classification) and chemical subgroup (4th level) were analysed using a 50% false detection rate. After excluding antiepileptics, antidiabetics, antiasthmatics and SSRIs/psycholeptics already under investigation, 27 associations were evaluated. If evidence for a signal persisted after data validation, a literature review was conducted for prior evidence of human teratogenicity.
Thirteen out of 27 CA-medication exposure signals, based on 389 exposed cases, passed data validation. There was some prior evidence in the literature to support six signals (gastroschisis and levonorgestrel/ethinylestradiol (OR 4.10, 95% CI 1.70-8.53; congenital heart disease/pulmonary valve stenosis and nucleoside/tide reverse transcriptase inhibitors (OR 5.01, 95% CI 1.99-14.20/OR 28.20, 95% CI 4.63-122.24); complete absence of a limb and pregnen (4) derivatives (OR 6.60, 95% CI 1.70-22.93); hypospadias and pregnadien derivatives (OR 1.40, 95% CI 1.10-1.76); hypospadias and synthetic ovulation stimulants (OR 1.89, 95% CI 1.28-2.70). Antipropulsives produced a signal for syndactyly while the literature revealed a signal for hypospadias. There was no prior evidence to support the remaining six signals involving the ordinary salt combinations, propulsives, bulk-forming laxatives, hydrazinophthalazine derivatives, gonadotropin releasing hormone analogues and selective serotonin agonists.
Signals which strengthened prior evidence should be prioritized for further investigation, and independent evidence sought to confirm the remaining signals. Some chance associations are expected and confounding by indication is possible
ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations
The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ~18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community.Fil: Kokori, A.. University College London; Reino UnidoFil: Tsiaras, A.. University College London; Reino UnidoFil: Edwards, B.. University College London; Reino UnidoFil: Jones, A.. Amateur Astronomer; Reino Unido. British Astronomical Association; Reino UnidoFil: Pantelidou, G.. Aristotle University of Thessaloniki; GreciaFil: Tinetti, G.. University College London; Reino UnidoFil: Bewersdorff, L.. Amateur Astronomer; Reino UnidoFil: Iliadou, A.. Aristotle University of Thessaloniki; GreciaFil: Jongen, Y.. Observatoire de Vaison-La-Romaine; FranciaFil: Lekkas, G.. University of Ioannina; GreciaFil: Nastasi, A.. INAF. Osservatorio Astronomico di Palermo; ItaliaFil: Poultourtzidis, E.. Aristotle University of Thessaloniki; GreciaFil: Sidiropoulos, C.. University of Ioannina; GreciaFil: Walter, F.. Štefánik Observatory; República ChecaFil: Wünsche, A.. Observatoire des Baronnies Provençales; FranciaFil: Abraham, R.. East Sussex Astronomical Society; Reino UnidoFil: Agnihotri, V. K.. Amateur Astronomer; Reino UnidoFil: Albanesi, R.. ARA Associazione Romana Astrofili; ItaliaFil: Arce Mansego, E.. Asociación Valenciana de Astronomía; EspañaFil: Arnot, D.. The Open University; Reino UnidoFil: Audejean, M.. Amateur Astronomer; Reino UnidoFil: Aumasson, C.. Observatoire des Baronnies Provençales; FranciaFil: Bachschmidt, M.. Amateur Astronomer; Reino UnidoFil: Baj, G.. Amateur Astronomer; Reino UnidoFil: Barroy, P. R.. Universite de Picardie Jules Verne (universite de Picardie Jules V);Fil: Belinski, A. A.. Lomonosov Moscow State University; RusiaFil: Bennett, D.. British Astronomical Association; Reino UnidoFil: Falco, C.. GAL Hassin. Centro Internazionale per le Scienze Astronomiche; ItaliaFil: Fernandez Lajus, Eduardo Eusebio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Zíbar, M.. Czech Astronomical Society; República Chec
- …