33 research outputs found

    The Aedes aegypti Domino Ortholog p400 Regulates Antiviral Exogenous Small Interfering RNA Pathway Activity and ago-2 Expression

    Get PDF
    Arboviruses are pathogens of humans and animals. A better understanding of the interactions between these pathogens and the arthropod vectors, such as mosquitoes, that transmit them is necessary to develop novel control measures. A major antiviral pathway in the mosquito vector is the exogenous small interfering RNA (exo-siRNA) pathway, which is induced by arbovirus-derived double-stranded RNA in infected cells. Although recent work has shown the key role played by Argonaute-2 (Ago-2) and Dicer-2 (Dcr-2) in this pathway, the regulatory mechanisms that govern these pathways have not been studied in mosquitoes. Here, we show that the Domino ortholog p400 has antiviral activity against the alphavirus Semliki Forest virus (Togaviridae) both in Aedes aegypti-derived cells and in vivo. Antiviral activity of p400 was also demonstrated against chikungunya virus (Togaviridae) and Bunyamwera virus (Peribunyaviridae) but not Zika virus (Flaviviridae). p400 was found to be expressed across mosquito tissues and regulated ago-2 but not dcr-2 transcript levels in A. aegypti mosquitoes. These findings provide novel insights into the regulation of an important aedine exo-siRNA pathway effector protein, Ago-2, by the Domino ortholog p400. They add functional insights to previous observations of this protein’s antiviral and RNA interference regulatory activities in Drosophila melanogaster

    Simulation of SVPWM Based Multivariable Control Method for a DFIG Wind Energy System

    Get PDF
    This paper deals with a variable speed device toproduce electrical energy on a power network based on adoubly-fed induction machine used in generating mode(DFIG) in wind energy system by using SVPWM powertransfer matrix. This paper presents a modeling and controlapproach which uses instantaneous real and reactive powerinstead of dq components of currents in a vector controlscheme. The main features of the proposed model comparedto conventional models in the dq frame of reference arerobustness and simplicity of realization. The sequential loopclosing technique is adopted to design a multivariable controlsystem including six compensators for a DFIG wind energysystem to capture the maximum wind power and to inject therequired reactive power to the generator. In this paperSVPWM method is used for better controlling of converters.It also provides fault ride through method to protect theconverter during a fault. The time-domain simulation of thestudy system is presented by using MATLAB Simulink to testthe system robustness, to validate the proposed model and toshow the enhanced tracking capability

    Evaluation of a novel correction procedure to remove electrode impedance effects from broadband SIP measurements

    No full text
    Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements to improve the accuracy of broadband complex electrical resistivity measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference < 0.2 mrad) up to a frequency of 10 kHz after the effect of the different electrode impedances was removed. Finally, SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ
    corecore