59 research outputs found

    Selective effects of NF-jB1 deficiency in CD4 1 T cells on Th2 and TFh induction by alum-precipitated protein vaccines

    Get PDF
    NF-jB1-dependent signaling directs the development of CD4 1 Th2 cells during allergic airway inflammation and protective responses to helminth infection. Here, we show that IL-4 and IL-13 production is NF-jB1-dependent in mouse OVA-specific CD

    Adipose tissue macrophage heterogeneity and the role of Tim4âș macrophages in lipid homeostasis

    Get PDF
    Resident macrophages are essential for the maintenance of tissue homeostasis as they participate in clearance of apoptotic cells and tissue remodelling and repair. In recent years, there has been an increased interest in the study of adipose tissue macrophages (ATMs). In lean individuals, ATMs are important for the control of insulin sensitivity, thermogenesis, angiogenesis and adipose tissue development. In obesity, the number and phenotype of ATMs is altered, and is associated with chronic low grade systemic and local inflammation. These “pro-inflammatory” changes are postulated to contribute to the manifestation of metabolic syndrome. These findings have suggested that the pool of ATMs is heterogeneous and may change, especially during obesity. To date, the characterisation of ATMs has been limited largely to the F4/80/CD11b markers, however the hypothesis of this thesis is that ATMs have distinct phenotype and function that could influence, in different ways, tissue homeostasis. This thesis aims to characterise and phenotype ATM subsets in order to better understand their potential specific role in the tissue. During the course of this research, a novel population of Tim4+ resident ATMs were identified. An additional aim of this thesis was to elucidate their role in adipose tissue homeostasis. Partial bone marrow chimeras were used to identify macrophage origin. The main AT depots were shielded from irradiation and a donor BM was injected intravenously. After 8 weeks, the origin of macrophages was analysed using flow cytometry. Tim4, a phosphatidylserine receptor mediating phagocytosis of apoptotic cells and a marker found on resident macrophages in other tissues, was used for the first time in adipose tissue. Four subsets of ATMs were identified: F4/80highCD11c-Tim4+, F4/80highCD11c- Tim4-; F4/80lowCD11c+Tim4-; F4/80lowCD11c-Tim4-. Interestingly, this newly described F4/80highTim4+ ATM subset showed the lowest non-host chimerism compared to the other ATMs, suggesting this is a main self-replenishing resident ATM population. To study the impact of obesity on ATM turnover, partial chimeric mice were fed HFD for 8 weeks. This increased the number of macrophages in AT. However, the different subsets of ATMs were differentially affected by the diet. Indeed, only a small proportion of Tim4+ ATMs derived from the bone marrow. In contrast, replenishment of the 3 other subsets was almost fully dependent on the arrival of monocyte-derived cells from the bone marrow. TIMD4, the gene encoding for Tim4, has been highlighted in genetic studies as being linked with dyslipidaemia. This suggests that Tim4+ ATMs might play a role in lipid homeostasis. Further characterisation of Tim4 ATMs demonstrated that these Tim4+ ATMs are highly charged in neutral lipid, and also have an increased lysosomal activity (shown by lysotracker staining) compared to the other ATM subsets. Using blocking anti-Tim4 antibodies in vivo, I found that Tim4 contributed markedly to free fatty acid (FFA) release into the plasma after short-term and long term HFD feeding. In addition, in vitro and in vivo experiments demonstrated that Tim4 could be required for the uptake of neutral lipids and their integration into lysosomes for degradation, though this seems to be dependent on the nature of the lipid. Collectively, these results indicate that Tim4 plays a crucial role in the control of lipid trafficking under conditions when dietary lipid is in excess. Tim4 allows uptake of lipids by Tim4+ ATMs and subsequent release of FFA into the circulation. Finally, the presence of Tim4+ lipid laden ATMs was demonstrated in the human omentum. This finding may lead to the discovery of new targets to improve metabolic health in obese patients. This work stresses the importance of resident ATM population in body lipid homeostasis as they could be involved in coping with lipid availability in the body and influence the amount of FFA in the plasma

    Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages

    Get PDF
    International audienceMacrophages reside in the body cavities where they maintain serosal homeostasis and provide immune surveillance. Peritoneal macrophages are implicated in the aetiology of pathologies including peritonitis, endometriosis and metastatic cancer thus understanding the factors that govern their behaviour is vital. Using a combination of fate mapping techniques, we have investigated the impact of sex and age on murine peritoneal macrophage differentiation, turnover and function. We demonstrat

    Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells

    Get PDF
    Objective. Tissue glucocorticoid (GC) levels are regulated by the GC-activating enzyme 11ÎČ- hydroxysteroid dehydrogenase type 1 (11ÎČ-HSD1). This enzyme is expressed in cells and tissues arising from mesenchymal stromal cells. Proinflammatory cytokines dramatically increase expression of 11ÎČ-HSD1 in stromal cells, an effect that has been implicated in inflammatory arthritis, osteoporosis, obesity, and myopathy. Additionally, GCs act synergistically with proinflammatory cytokines to further increase enzyme expression. The present study was undertaken to investigate the mechanisms underlying this regulation. Methods. Gene reporter analysis, rapid amplification of complementary DNA ends (RACE), chemical inhibition experiments, and genetic disruption of intracellular signaling pathways in mouse embryonic fibroblasts (MEFs) were used to define the molecular mechanisms underlying the regulation of 11ÎČ-HSD1 expression. Results. Gene reporter, RACE, and chemical inhibitor studies demonstrated that the increase in 11ÎČ- HSD1 expression with tumor necrosis factor α (TNFÎČ)/ interleukin-1ÎČ (IL-1ÎČ) occurred via the proximal HSD11B1 gene promoter and depended on NF-ÎșB signaling. These findings were confirmed using MEFs with targeted disruption of NF-ÎșB signaling, in which RelA (p65) deletion prevented TNFα/IL-1ÎČ induction of 11ÎČ- HSD1. GC treatment did not prevent TNFα-induced NF-ÎșB nuclear translocation. The synergistic enhancement of TNFα-induced 11ÎČ-HSD1 expression with GCs was reproduced by specific inhibitors of p38 MAPK. Inhibitor and gene deletion studies indicated that the effects of GCs on p38 MAPK activity occurred primarily through induction of dual-specificity phosphatase 1 expression. Conclusion. The mechanism by which stromal cell expression of 11ÎČ-HSD1 is regulated is novel and distinct from that in other tissues. These findings open new opportunities for development of therapeutic interventions aimed at inhibiting or stimulating local GC levels in cells of mesenchymal stromal lineage during inflammation
    • 

    corecore