61 research outputs found

    Understanding the role of CaMKIIa in Angelman Syndrome by looking at its potential interactors through proximity labelling

    Get PDF
    280 p.El Síndrome de Angelman es una enfermedad rara que se caracteriza por la ausencia de la E3 ligasa de ubicuitina UBE3A en las neuronas. Numerosos datos sugieren una relación entre CAMKII y UBE3A. En esta tesis se emplea el etiquetado por proximidad con BioID2 y TurboID, tanto en cultivos celulares como en Drosophila melanogaster, con el fin de identificar posibles interactores. Mediante esta estrategia hemos sido capaces de identificar la E3 ligasa de ubicuitina ITCH como la responsable de monoubicuitinar a CAMKIIa y a la deubiquitinasa MYSM1 como un mediador indirecto de la ubicuitinación de CAMKIIa. Además, cuando CaMKIIa se encuentra más ubicuitinada, su fosforilación en la T286 y, por tanto, activación se ve reducida. Los experimentos en mosca permitieron identificar varias proteínas relacionadas con enfermedades neurodegenerativas y la proteína Nbea, también identificada como posible sustrato de UBE3A, involucrada en el espectro autista. Por otro lado, nuestro grupo recientemente ha identificado la proteína Neurocondrina (NCDN) como un sustrato de UBE3A en el cerebro de ratón. NCDN regula de forma negativa la fosforilación de T286 de CaMKII, reduciendo así su actividad. Observamos que las cadenas a través de la lisina 48 son las que se forman en NCDN por UBE3A y la envían a su degradación. Finalmente, realizamos un estudio sobre cuáles eran las lisinas de NCDN que tendían a ser ubicuitinadas por UBE3A. Los resultados, aunque prometedores, no identificaban de manera significativa ninguna lisina dentro de la secuencia de NCDN

    Unpublished Latin inscriptions in the locality of Las Uces (Valsalabroso, Salamanca)

    Get PDF
    En el transcurso de una prospección arqueológica se documentaron varias inscripciones latinas inéditas en la localidad de Las Uces (Valsalabroso, Salamanca). Se trata de 4 epígrafes de naturaleza funeraria que se suman a otros tres conocidos por la bibliografía. Todos conforman un grupo homogéneo, cuyas características encajan con las producciones epigráficas conocidas en el occidente de la provincia de Salamanca. El trabajo da a conocer los nuevos epígrafes y realiza una valoración crítica sobre la relación de estas evidencias con un asentamiento indígena romanizado bajo la localidad de Las Uces.In the course of an archaeological prospection several unpublished Latin inscriptions were documented in the locality of Las Uces (Valsalabroso, Salamanca). They are 4 funerary monuments that are added to other three known by the bibliography. All forms a homogenous group, whose characteristics fit to the well-known epigraphic productions in the West of the province of Salamanca. This paper presents the new epigraphs and makes a critical valuation on the relation of these evidences with a Romanizated indigenous settlement under the locality of Las Uces

    How to Inactivate Human Ubiquitin E3 Ligases by Mutation

    Get PDF
    E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to substrate proteins, a process that determines the fate of the modified protein. Numerous diseases are caused by defects in the ubiquitin-proteasome machinery, including when the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the resulting effects at molecular or cellular level have been the focus of many studies during the last few years. For this purpose, site-specific mutation of key residues involved in either protein interaction, substrate recognition or ubiquitin transfer have been reported to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-specific inactivating mutations that have been carried out in 120 human E3 ubiquitin ligases. We foresee that the information gathered here will be helpful for the design of future experimental strategies.This work was supported by Spanish MINECO (grant SAF2016-76898-P) cofinanced with FEDER funds. JR was funded with a postdoctoral fellowship from the University of the Basque Country (UPV/EHU)

    GD3 synthase overexpression sensitizes hepatocarcinoma cells to hypoxia and reduces tumor growth by suppressing the cSrc/NF-κB survival pathway

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Hypoxia-mediated HIF-1a stabilization and NF-kB activation play a key role in carcinogenesis by fostering cancer cell survival, angiogenesis and tumor invasion. Gangliosides are integral components of biological membranes with an increasingly recognized role as signaling intermediates. In particular, ganglioside GD3 has been characterized as a proapoptotic lipid effector by promoting cell death signaling and suppression of survival pathways. Thus, our aim was to analyze the role of GD3 in hypoxia susceptibility of epatocarcinoma cells and in vivo tumor growth.[Methodology/Principal Findings]: We generated and characterized a human hepatocarcinoma cell line stably expressing GD3 synthase (Hep3B-GD3), which catalyzes the synthesis of GD3 from GM3. Despite increased GD3 levels (2–3 fold), no significant changes in cell morphology or growth were observed in Hep3B-GD3 cells compared to wild type Hep3B cells under normoxia. However, exposure of Hep3B-GD3 cells to hypoxia (2% O2) enhanced reactive oxygen species (ROS) generation, resulting in decreased cell survival, with similar findings observed in Hep3B cells exposed to increasing doses of exogenous GD3. In addition, hypoxia-induced c-Src phosphorylation at tyrosine residues, NF-kB activation and subsequent expression of Mn-SOD were observed in Hep3B cells but not in Hep3B-GD3 cells. Moreover, MnTBAP, an antioxidant with predominant SOD mimetic activity, reduced ROS generation, protecting Hep3B-GD3 cells from hypoxia-induced death. Finally, lower tumor growth, higher cell death and reduced Mn-SOD expression were observed in Hep3B-GD3 compared to Hep3B tumor xenografts.[Conclusion]: These findings underscore a role for GD3 in hypoxia susceptibility by disabling the c-Src/NF-kB survival pathway resulting in lower Mn-SOD expression, which may be of relevance in hepatocellular carcinoma therapy.Grant support: CIBEREHD and grants FIS06/0395, FIS07/1039, SAF2006-06789 and SAF2008-02199 by Instituto de Salud Carlos III and Ministry of Science and Innovation from Spain, and from the Research Center for Liver and Pancreatic Diseases, P50-AA-11999 funded by the US National Institute on Alcohol Abuse and Alcoholism.Peer reviewe

    Angiogenin secretion from hepatoma cells activates hepatic stellate cells to amplify a self-sustained cycle promoting liver cancer

    Get PDF
    Hepatocellular carcinoma (HCC) frequently develops in a pro-inflammatory and pro-fibrogenic environment with hepatic stellate cells (HSCs) remodeling the extracellular matrix composition. Molecules secreted by liver tumors contributing to HSC activation and peritumoral stromal transformation remain to be fully identified. Here we show that conditioned medium from HCC cell lines, Hep3B and HepG2, induced primary mouse HSCs transdifferentiation, characterized by profibrotic properties and collagen modification, with similar results seen in the human HSC cell line LX2. Moreover, tumor growth was enhanced by coinjection of HepG2/LX2 cells in a xenograft murine model, supporting a HCC-HSC crosstalk in liver tumor progression. Protein microarray secretome analyses revealed angiogenin as the most robust and selective protein released by HCC compared to LX2 secreted molecules. In fact, recombinant angiogenin induced in vitro HSC activation requiring its nuclear translocation and rRNA transcriptional stimulation. Moreover, angiogenin antagonism by blocking antibodies or angiogenin inhibitor neomycin decreased in vitro HSC activation by conditioned media or recombinant angiogenin. Finally, neomycin administration reduced tumor growth of HepG2-LX2 cells coinjected in mice. In conclusion, angiogenin secretion by HCCs favors tumor development by inducing HSC activation and ECM remodeling. These findings indicate that targeting angiogenin signaling may be of potential relevance in HCC managementThis study was funded by grants from the Instituto de Salud Carlos III (FIS PI12/00110, PI09/00056 to A.M., FIS PI10/02114, PI13/00374 to M.M., PI12/01265 to J.C. and PI11/0325 to J.F.C.), Ministerio de Economía y Competitividad (SAF 2012/34831 to J.F.C. and SAF2011-23031 to C.G.R.) and co-funded by FEDER (Fondo Europeo de Desarrollo Regional, Unión Europea. “Una manera de hacer Europa”); center grant P50-AA-11999 from Research Center for Liver and Pancreatic Diseases, US NIAAA to J.F.C.); Fundació la Marató de TV3 to J.F.C., Mutua Madrilea (AP103502012) to C.G.R., and by CIBERehd from the Instituto de Salud Carlos IIIPeer Reviewe

    Low-count monoclonal B-cell lymphocytosis persists after seven years of follow up and is associated with a poorer outcome

    Get PDF
    Low-count monoclonal B-cell lymphocytosis is defined by the presence of very low numbers of circulating clonal B cells, usually phenotypically similar to chronic lymphocytic leukemia cells, whose biological and clinical significance remains elusive. Herein, we re-evaluated 65/91 low-count monoclonal B-cell lymphocytosis cases (54 chronic lymphocytic leukemia-like and 11 non-chronic lymphocytic leukemia-like) followed-up for a median of seven years, using high-sensitivity flow cytometry and interphase fluorescence in situ hybridization. Overall, the clone size significantly increased in 69% of low-count monoclonal B-cell lymphocytosis cases, but only one subject progressed to high-count monoclonal B-cell lymphocytosis. In parallel, the frequency of cytogenetic alterations increased over time (32% vs. 61% of cases, respectively). The absolute number of the major T-cell and natural killer cell populations also increased, but only among chronic lymphocytic leukemia-like cases with increased clone size vs. age- and sex-matched controls. Although progression to chronic lymphocytic leukemia was not observed, the overall survival of low-count monoclonal B-cell lymphocytosis individuals was significantly reduced vs. non-monoclonal B-cell lymphocytosis controls (P=0.03) plus the general population from the same region (P≤0.001), particularly among females (P=0.01); infection and cancer were the main causes of death in low-count monoclonal B-cell lymphocytosis. In summary, despite the fact that mid-term progression from low-count monoclonal B-cell lymphocytosis to high-count monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia appears to be unlikely, these clones persist at increased numbers, usually carrying more genetic alterations, and might thus be a marker of an impaired immune system indirectly associated with a poorer outcome, particularly among females.This work was supported by the RD06/0020/0035 and RD12/0036/0048 grants from Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, (Madrid, Spain and FONDOS FEDER); CB16/12/00400 grant (CIBERONC, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, (Madrid, Spain and FONDOS FEDER); the FIS PI06/0824-FEDER, PS09/02430-FEDER, PI12/00905- FEDER, DTS15/00119-FEDER, PI16/00787-FEDER and PI17/00399-FEDER grants, from the Fondo de Investigación Sanitaria of Instituto de Salud Carlos III; the GRS206/A/08 grant, (Ayuda al Grupo GR37 de Excelencia, SAN/1778/2009) from the Gerencia Regional de Salud (Consejería de Educación and Consejería de Sanidad of Castilla y León, Valladolid, Spain) and the SA079U14 grant (Consejería de Educación and Consejería de Sanidad of Castilla y León, Valladolid, Spain). ML Gutiérrez is supported by grant PTA2014-09963-I from the Instituto de Salud Carlos III

    Ex vivo identification and characterization of a population of CD13high CD105+ CD45− mesenchymal stem cells in human bone marrow

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.[Introduction]: Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and multilineage differentiation. Their multipotential capacity and immunomodulatory properties have led to an increasing interest in their biological properties and therapeutic applications. Currently, the definition of MSCs relies on a combination of phenotypic, morphological and functional characteristics which are typically evaluated upon in vitro expansion, a process that may ultimately lead to modulation of the immunophenotypic, functional and/or genetic features of these cells. Therefore, at present there is great interest in providing markers and phenotypes for direct in vivo and ex vivo identification and isolation of MSCs. [Methods]: Multiparameter flow cytometry immunophenotypic studies were performed on 65 bone marrow (BM) samples for characterization of CD13high CD105+ CD45– cells. Isolation and expansion of these cells was performed in a subset of samples in parallel to the expansion of MSCs from mononuclear cells following currently established procedures. The protein expression profile of these cells was further assessed on (paired) primary and in vitro expanded BM MSCs, and their adipogenic, chondrogenic and osteogenic differentiation potential was also determined. [Results]: Our results show that the CD13high CD105+ CD45− immunophenotype defines a minor subset of cells that are systematically present ex vivo in normal/reactive BM (n = 65) and that display immunophenotypic features, plastic adherence ability, and osteogenic, adipogenic and chondrogenic differentiation capacities fully compatible with those of MSCs. In addition, we also show that in vitro expansion of these cells modulates their immunophenotypic characteristics, including changes in the expression of markers currently used for the definition of MSCs, such as CD105, CD146 and HLA-DR. [Conclusions]: BM MSCs can be identified ex vivo in normal/reactive BM, based on a robust CD13high CD105+ and CD45− immunophenotypic profile. Furthermore, in vitro expansion of these cells is associated with significant changes in the immunophenotypic profile of MSCs.This work was supported by grants from the Instituto de Salud Carlos III, FEDER, Ministry of Economy and Competitivity, Madrid, Spain (grant PI11/02399; RETICEF RD12/0043/0021; RTICC RD12/0036/0048); Fundación Ramon Areces, Madrid, Spain (grant CIVP16A1806); Fundación Científica de la Asociación Española Contra el Cáncer (AECC); Consejería de Sanidad, Gerencia Regional de Salud de Castilla y León (SACYL) (grant BIO/SA24/13) and Fundación Samuel Solórzano Barruso (University of Salamanca, Spain); CT was supported by a grant co-financed by the European Social Fund and the Junta de Castilla y León (Spain).Peer Reviewe

    LOW-COAST: hacia un sistema de monitorización de topo-batimetrías de bajo coste

    Get PDF
    Se agradece la financiación parcial de los proyectos “SISTEMA INTEGRADO DE PREDICCIÓN PROBABILÍSTICA DE INUNDACIÓN Y EROSIÓN EN PLAYAS” de SODERCAN y “EQUIPAMIENTO PARA MONITORIZACIÓN CON DRONES DE TOPO-BATIMETRÍAS EN PLAYAS Y ESTUARIOS” del Gobierno de Cantabria

    Low-count monoclonal B-cell lymphocytosis persists after seven years of follow up and is associated with a poorer outcome

    Get PDF
    [EN]Low-count monoclonal B-cell lymphocytosis is defined by the presence of very low numbers of circulating clonal B cells, usually phenotypically similar to chronic lymphocytic leukemia cells, whose biological and clinical significance remains elusive. Herein, we re-evaluated 65/91 low-count monoclonal B-cell lymphocytosis cases (54 chronic lymphocytic leukemia-like and 11 non-chronic lymphocytic leukemialike) followed-up for a median of seven years, using high-sensitivity flow cytometry and interphase fluorescence in situ hybridization. Overall, the clone size significantly increased in 69% of low-count monoclonal B-cell lymphocytosis cases, but only one subject progressed to high-count monoclonal B-cell lymphocytosis. In parallel, the frequency of cytogenetic alterations increased over time (32% vs. 61% of cases, respectively). The absolute number of the major T-cell and natural killer cell populations also increased, but only among chronic lymphocytic leukemia-like cases with increased clone size vs. age- and sex-matched controls. Although progression to chronic lymphocytic leukemia was not observed, the overall survival of low-count monoclonal B-cell lymphocytosis individuals was significantly reduced vs. non-monoclonal Bcell lymphocytosis controls (P=0.03) plus the general population from the same region (P≤0.001), particularly among females (P=0.01); infection and cancer were the main causes of death in low-count monoclonal B-cell lymphocytosis. In summary, despite the fact that mid-term progression from low-count monoclonal B-cell lymphocytosis to high-count monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia appears to be unlikely, these clones persist at increased numbers, usually carrying more genetic alterations, and might thus be a marker of an impaired immune system indirectly associated with a poorer outcome, particularly among females
    corecore