128 research outputs found
High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in france and characterization of biochemical and clinical features.
PURPOSE: To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report 6 novel mutations, to characterize the biochemical features of a recurrent novel mutation, and to study the clinical features of adRP patients.
DESIGN: Retrospective clinical and molecular genetic study.
METHODS: Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot.
RESULTS: We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1-0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families.
CONCLUSIONS: The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0%-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases, which could be underdiagnosed
A Rare Disease Patient Manager
ABSTRACT publicado: 6th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB. Salamanca, 28-30 Março 2012The personal health implications behind rare diseases are seldom considered
in widespread medical care. The low incidence rate and complex treatment
process makes rare disease research an underrated field in the life sciences. However,
it is in these particular conditions that the strongest relations between genotypes
and phenotypes are identified. The rare disease patient manager, detailed in
this manuscript, presents an innovative perspective for a patient-centric portal integrating
genetic and medical data. With this strategy, patient’s digital records are
transparently integrated and connected to wet-lab genetics research in a seamless
working environment. The resulting knowledge base offers multiple data views,
geared towards medical staff, with patient treatment and monitoring data; genetics
researchers, through a custom locus-specific database; and patients, who for once
play an active role in their treatment and rare diseases research
The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations.
Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations)
VariVis: a visualisation toolkit for variation databases
<p>Abstract</p> <p>Background</p> <p>With the completion of the Human Genome Project and recent advancements in mutation detection technologies, the volume of data available on genetic variations has risen considerably. These data are stored in online variation databases and provide important clues to the cause of diseases and potential side effects or resistance to drugs. However, the data presentation techniques employed by most of these databases make them difficult to use and understand.</p> <p>Results</p> <p>Here we present a visualisation toolkit that can be employed by online variation databases to generate graphical models of gene sequence with corresponding variations and their consequences. The VariVis software package can run on any web server capable of executing Perl CGI scripts and can interface with numerous Database Management Systems and "flat-file" data files. VariVis produces two easily understandable graphical depictions of any gene sequence and matches these with variant data. While developed with the goal of improving the utility of human variation databases, the VariVis package can be used in any variation database to enhance utilisation of, and access to, critical information.</p
Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing
<p>Abstract</p> <p>Background</p> <p>Duchenne and Becker Muscular dystrophies (DMD/BMD) are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements.</p> <p>Methods</p> <p>We selected 47 patients (41 families; 35 DMD, 6 BMD) without deletions and duplications in <it>DMD </it>gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis). This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis.</p> <p>Results</p> <p>We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients), followed by TAG (n = 7) and TAA (n = 4). We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the <it>DMD </it>gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65.</p> <p>Conclusion</p> <p>The analysis of our patients' sample, carrying point mutations or complex rearrangements in <it>DMD </it>gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects and dystrophin functional domains. These data can have a prognostic relevance and can be useful in directing new therapeutic approaches, which rely on a precise definition of the genetic defects as well as their molecular consequences.</p
Detection of mutations within exons 4 to 8 of the p53 tumor suppressor gene in canine mammary glands
Differences in regulation of tight junctions and cell morphology between VHL mutations from disease subtypes
The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases.
Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes
Identification of tumour-associated and germ line p53 mutations in canine mammary cancer
Mutations of the tumour suppressor p53 gene are found in a number of spontaneous canine cancers and may contribute to increased cytogenetic alterations and tumour formation. Using reverse transcription and DNA amplification, we isolated p53 cDNA from normal and tumour tissue of ten canine mammary cancer patients. DNA sequencing identified p53 mutations in three of the ten patients. These included tumour-associated p53 gene mutations within exons 2 and 5 and a germ line deletion of exons 3 to 7. These results support a role for p53 inactivation in canine mammary tumour formation and breed predisposition to cancer. Such information could prove invaluable in the successful outbreeding of inherited predisposition to cancer in the dog. A putative polymorphism was also identified at codon 69 in exon 4 and we discuss the possibility that similar polymorphisms may be associated with human breast cancer. © 1999 Cancer Research Campaig
- …
