8 research outputs found

    Measurement of the Bs0J/ψK0B^0_s\rightarrow J/\psi K^{*0} branching fraction and angular amplitudes

    Get PDF
    A search for the decay Bs0J/ψK0B^0_s\rightarrow J/\psi K^{*0} with K0Kπ+K^{*0} \rightarrow K^-\pi^+ is performed with 0.37 fb1^{-1} of pppp collisions at s\sqrt{s} = 7 TeV collected by the LHCb experiment, finding a \Bs \to J\psi K^-\pi^+ peak of 114±11114 \pm 11 signal events. The Kπ+K^-\pi^+ mass spectrum of the candidates in the Bs0B^0_s peak is dominated by the K0K^{*0} contribution. Subtracting the non-resonant Kπ+K^-\pi^+ component, the branching fraction of \BsJpsiKst is (4.40.4+0.5±0.8)×105(4.4_{-0.4}^{+0.5} \pm 0.8) \times 10^{-5}, where the first uncertainty is statistical and the second systematic. A fit to the angular distribution of the decay products yields the \Kst polarization fractions fL=0.50±0.08±0.02f_L = 0.50 \pm 0.08 \pm 0.02 and f=0.190.08+0.10±0.02f_{||} = 0.19^{+0.10}_{-0.08} \pm 0.02

    Measurement of Upsilon production in pp collisions at \sqrt{s} = 7 TeV

    Get PDF
    The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -> mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT < 15 GeV/c and 2.0 < y < 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -> Upsilon(1S) X) x B(Upsilon(1S)->mu+ mu-) = 2.29 {\pm} 0.01 {\pm} 0.10 -0.37 +0.19 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S)->mu+ mu-) = 0.562 {\pm} 0.007 {\pm} 0.023 -0.092 +0.048 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S)->mu+ mu-) = 0.283 {\pm} 0.005 {\pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.Comment: 22 pages, 7 figure

    Evidence for CP violation in time-integrated D0 -> h-h+ decay rates

    Get PDF
    A search for time-integrated CP violation in D0 -> h-h+ (h=K, pi) decays is presented using 0.62 fb^-1 of data collected by LHCb in 2011. The flavor of the charm meson is determined by the charge of the slow pion in the D*+ -> D0 pi+ and D*- -> D0bar pi- decay chains. The difference in CP asymmetry between D0 -> K-K+ and D0 -> pi-pi+, Delta ACP = ACP(K-K+) - ACP(pi-pi+), is measured to be [-0.82 \pm 0.21(stat.) \pm 0.11(syst.)]%. This differs from the hypothesis of CP conservation by 3.5 standard deviations.Comment: 8 pages, 3 figures, 2 tables; v2 minor updates after journal revie

    Framework TDR for the LHCb Upgrade

    No full text

    Framework TDR for the LHCb Upgrade

    No full text
    This document is a Framework Technical Design Report for the upgrade of the LHCb experiment. It adds to the information in the Letter of Intent, in particular concerning the foreseen schedule, cost and participating institutes. Updates are given for the physics performance, based on the experience gained with the first full year of data taking, on the detector requirements and the progress of the sub-system R&D. Within the framework presented here, it is expected that the individual sub-system TDRs will follow on completion of the R&D phase in the next year

    Measurement of relative branching fractions of B decays to psi(2S) and J/psi mesons

    No full text
    The relative rates of B-meson decays into J/psi and psi(2S) mesons are measured for the three decay modes in pp collisions recorded with the LHCb detector. The ratios of branching fractions (B) are measured to be B(B+ -> psi(2S)K+)/B(B+ -> J/psi K+) = 0.594 +/- 0.006(stat) +/- 0.016(syst) +/- 0.015(R-psi), B(B-0 -> psi(2S)K*(0))/B(B-0 -> J/psi K*(0)) = 0.476 +/- 0.014(stat) +/- 0.010(syst) +/- 0.012(R-psi), B(B-s(0) -> psi(2S)phi)/B(B-s(0) -> J/psi phi) = 0.489 +/- 0.026(stat) +/- 0.021(syst) +/- 0.012(R-psi), where the third uncertainty is from the ratio of the psi(2S) and J/psi branching fractions to mu(+)mu(-). RI Galli, Domenico/A-1606-2012; Sarti, Alessio/I-2833-2012; Petrolini, Alessandro/H-3782-2011; Carbone, Angelo/C-8289-2012; de Paula, Leandro/I-9278-2012; manca, giulia/I-9264-2012; Patrignani, Claudia/C-5223-2009; Marconi, Umberto/J-2263-2012; de Simone, Patrizia/J-3549-2012; Cardini, Alessandro/J-5736-2012; Teodorescu, Eliza/K-3044-201

    Letter of Intent for the LHCb Upgrade

    No full text
    The primary goal of LHCb is to measure the effects of new particles or forces beyond the Standard Model. Results obtained from data collected in 2010 show that the detector is robust and functioning well. While LHCb will be able to measure a host of interesting channels in heavy flavour decays in the upcoming few years, a limit of about 1 fb^ 121 of data per year cannot be overcome without upgrading the detector. The LHC machine does not face such a limitation. With the upgraded detector, read out at 40MHz, a much more flexible software-based triggering strategy will allow a large increase not only in data rate, as the detector would collect 5 fb^ 121 per year, but also the ability to increase trigger efficiencies especially in decays to hadronic final states. In addition, it will be possible to change triggers to explore different physics as LHC discoveries point us to the most interesting channels. Our physics scope extends beyond that of flavour. Possibilities for interesting discoveries exist over a whole variety of phenomena including searches for Majorana neutrinos, exotic Higgs decays and precision electroweak measurements. Here we describe the physics motivations and proposed detector changes for exploring new phenomena in proton-proton collisions near 14 TeV centre-of-mass energy

    Observation of Excited Lambda(0)(b) Baryons

    No full text
    Using pp collision data corresponding to 1.0 fb-1 integrated luminosity collected by the LHCb detector, two narrow states are observed in the Lambda0b pi+ pi- spectrum with masses 5911.97+-0.12(stat)+-0.02(syst)+- 0.66(Lambda0b mass) MeV/c2 and 5919.77+-0.08(stat)+-0.02(syst)+-0.66(Lambda0b mass) MeV/c2. The significances of the observations are 5.2 and 10.2 standard deviations, respectively. These states are interpreted as the orbitally excited Lambda0b baryons, Lambda*0b(5912) and Lambda*0b(5920)
    corecore