7 research outputs found

    STUDY ON PREVALENCE OF DEPRESSION AND ADVERSE DRUG REACTIONS AMONG SOUTH INDIAN EPILEPTIC PATIENTS

    Get PDF
    Objectives: To compare the prevalence and intensity of adverse drug reactions (ADR) in patients receiving antiepileptic monotherapy and polytherapy,and to assess the pattern of depression associated with the therapy.Methods: This is a prospective observational study conducted in neurology outpatient department for a time period of 6 months in a tertiary carehospital, South India. Patients diagnosed as epileptic for more than 6 months and receiving stable doses of antiepileptic drugs (AED) for 3 monthswere included in the study. Study participants receiving monotherapy and polytherapy were divided into groups. A detailed validated questionnairewas used to assess the incidence and severity of depression and ADRs among the study participants. Mann–Whitney test, Kruskal–Wallis test, andWilcoxon signed rank test were used to know the statistical significance at p<0.05.Results: Among 91 patients with epilepsy, depression was observed mainly in the study group receiving polytherapy than monotherapy. The severityof ADR observed among various study groups during the first and second visit were compared, which showed that all range of intensity scores werereported. During the second visit, the severity of ADR was high when compared to the first visit. Further incidence of ADRs with AED therapy wascompared which showed clinically significant values in all ADRs reported in both monotherapy and polytherapy.Conclusion: Our study showed, maximum ADRs were among the patients receiving polytherapy, and depression was observed in patients receivingpolytherapy. This suggests the need for safe drug practice.Keywords: Epilepsy, Anti-epileptics, Adverse drug reactions, Depression, Monotherapy, Polytherapy.Â

    ASSESSING THE IMPACT ON PEFR AMONG SMOKERS AND PASSIVE SMOKERS–A COMPARATIVE STUDY

    Get PDF
    Objective: The purpose of this study was to monitor the intensity and difference in Peak Expiratory Flow Rate (PEFR) between smokers and passive smokers. Methods: A total of 1000 participants were enrolled in two groups as smokers and passive smokers who are living closely with smokers. Their PEFR values were measured with Wright’s mini peak flow meter. The influence of smoking on the lung function among smokers and passive smokers were assessed with a suitable statistical test. Results: Among the study participants, most of the smokers were in the age group of 31 to 60 and 31 to 50 in passive smokers. Based on the lung function smokers (31%) and passive smokers (19.2%) were in the red zone, PEFR was decreased in both smokers as well as passive smokers, and the magnitude of decline was higher in passive smoking elderly individuals. The impact of passive smoking was significantly observed in all the categories of smoking history they are living with. Conclusion: Smokers and passive smokers have equally deleterious effects on PEFR. Where passive smoking emerged as the main variable to influence airway obstruction in smokers that caused a greater reduction in PEFR

    Global, regional, and national burden of neurological disorders during 1990-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Comparable data on the global and country-specific burden of neurological disorders and their trends are crucial for health-care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study provides such information but does not routinely aggregate results that are of interest to clinicians specialising in neurological conditions. In this systematic analysis, we quantified the global disease burden due to neurological disorders in 2015 and its relationship with country development level. Methods We estimated global and country-specific prevalence, mortality, disability-adjusted life-years (DALYs), years of life lost (YLLs), and years lived with disability (YLDs) for various neurological disorders that in the GBD classification have been previously spread across multiple disease groupings. The more inclusive grouping of neurological disorders included stroke, meningitis, encephalitis, tetanus, Alzheimer's disease and other dementias, Parkinson's disease, epilepsy, multiple sclerosis, motor neuron disease, migraine, tension-type headache, medication overuse headache, brain and nervous system cancers, and a residual category of other neurological disorders. We also analysed results based on the Socio-demographic Index (SDI), a compound measure of income per capita, education, and fertility, to identify patterns associated with development and how countries fare against expected outcomes relative to their level of development. Findings Neurological disorders ranked as the leading cause group of DALYs in 2015 (250.7 [95% uncertainty interval (UI) 229.1 to 274.7] million, comprising 10.2% of global DALYs) and the second-leading cause group of deaths (9.4 [9.1 to 9.7] million], comprising 16.8% of global deaths). The most prevalent neurological disorders were tensiontype headache (1505 9 [UI 1337.3 to 1681.6 million cases]), migraine (958.8 [872.1 to 1055.6] million), medication overuse headache (58.5 [50.8 to 67.4 million]), and Alzheimer's disease and other dementias (46.0 [40.2 to 52.7 million]). Between 1990 and 2015, the number of deaths from neurological disorders increased by 36.7%, and the number of DALYs by 7.4%. These increases occurred despite decreases in age-standardised rates of death and DALYs of 26.1% and 29.7%, respectively; stroke and communicable neurological disorders were responsible for most of these decreases. Communicable neurological disorders were the largest cause of DALYs in countries with low SDI. Stroke rates were highest at middle levels of SDI and lowest at the highest SDI. Most of the changes in DALY rates of neurological disorders with development were driven by changes in YLLs. Interpretation Neurological disorders are an important cause of disability and death worldwide. Globally, the burden of neurological disorders has increased substantially over the past 25 years because of expanding population numbers and ageing, despite substantial decreases in mortality rates from stroke and communicable neurological disorders. The number of patients who will need care by clinicians with expertise in neurological conditions will continue to grow in coming decades. Policy makers and health-care providers should be aware of these trends to provide adequate services.Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Artificial intelligence in microbial natural product drug discovery: current and emerging role

    No full text
    Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same molecules have caused a setback in the past. Artificial intelligence (AI) has had a profound impact on various research fields, and its application allows the effective performance of data analyses and predictions. With the advances in omics, it is possible to obtain a wealth of information for the identification, isolation, and target prediction of secondary metabolites. In this review, we discuss drug discovery based on natural products from microorganisms with the help of AI and machine learning
    corecore