10 research outputs found

    Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea. Methods We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates. Findings The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage. Interpretation By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health

    Narrative psychology

    No full text

    Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification

    No full text
    Emergence of advanced network analysis techniques utilizing resting-state functional Magnetic Resonance Imaging (R-fMRI) has enabled a more comprehensive understanding of neurological disorders at a whole-brain level. However, inferring brain connectivity from R-fMRI is a challenging task, particularly when the ultimate goal is to achieve good control-patient classification performance, owing to perplexing noise effects, curse of dimensionality, and inter-subject variability. Incorporating sparsity into connectivity modeling may be a possible solution to partially remedy this problem since most biological networks are intrinsically sparse. Nevertheless, sparsity constraint, when applied at an individual level, will inevitably cause inter-subject variability and hence degrade classification performance. To this end, we formulate the R-fMRI time series of each region-of-interest (ROI) as a linear representation of time series of other ROIs to infer sparse connectivity networks that are topologically identical across individuals. This formulation allows simultaneous selection of a common set of ROIs across subjects so that their linear combination is best in estimating the time series of the considered ROI. Specifically, l(1)-norm is imposed on each subject to filter out spurious or insignificant connections to produce sparse networks. A group-constraint is hence imposed via multi-task learning using a l(2)-norm to encourage consistent non-zero connections across subjects. This group-constraint is crucial since the network topology is identical for all subjects while still preserving individual information via different connectivity values. We validated the proposed modeling in mild cognitive impairment (MCI) identification and promising results achieved demonstrate its superiority in disease characterization, particularly greater sensitivity to early stage brain pathologies. The inferred group-constrained sparse network is found to be biologically plausible and is highly associated with the disease-associated anatomical anomalies. Furthermore, our proposed approach achieved similar classification performance when finer atlas was used to parcellate the brain space

    Aspects of urinary tract infections and antimicrobial resistance in hospitalized urology patients in Asia: 10-Year results of the Global Prevalence Study of Infections in Urology (GPIU)

    No full text
    10.1016/j.jiac.2017.11.013Journal of Infection and Chemotherapy244278-283JICH

    Microstrip Antenna-inception, Progress and Current-state of The Art Review

    No full text
    corecore