18 research outputs found

    Is there a common water-activity limit for the three domains of life?

    Get PDF
    Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a w) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a w. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a w). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 a w for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∌0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a w for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life

    Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic environments from Turkey

    Get PDF
    Cyanidiophytina are a group of polyextremophilic red algae with a worldwide, but discontinuous colonization. They are restricted to widely dispersed hot springs, geothermal habitats, and also some human-altered environments. Cyanidiophytina are predominant where pH is prohibitive for the majority of eukaryotes (pH 0.5-3). Turkey is characterized by areas rich in volcanic activity separated by non-volcanic areas. Here we show that Cyanidiophycean populations are present in thermal baths located around Turkey on neutral/alkaline soils. All known genera and species within Cyanidiophytina were detected in Turkey, including Galdieria phlegrea, recorded up to now only in Italian Phlegrean Fields. By phylogenetic analyses, Turkish G. sulphuraria strains are monophyletic with Italian and Icelandic strains, and with Russian G. daedala strains. G. maxima from Turkey clustered with Icelandic, Kamchatka, and Japanese populations. The discovery of Cyanidiophytina in non-acidic Turkish soils raises new questions about the ecological boundaries of these extremophilic algae. This aids in the understanding of the dispersal abilities and distribution patterns of this ecologically and evolutionarily interesting group of algae

    The Astrobiology Primer v2.0

    Get PDF
    Astrobiology is the science that seeks to understand the story of life in our universe. Astrobiology includes investigation of the conditions that are necessary for life to emerge and flourish, the origin of life, the ways that life has evolved and adapted to the wide range of environmental conditions here on Earth, the search for life beyond Earth, the habitability of extraterrestrial environments, and consideration of the future of life here on Earth and elsewhere. It therefore requires knowledge of physics, chemistry, biology, and many more specialized scientific areas including astronomy, geology, planetary science, microbiology, atmospheric science, and oceanography. However, astrobiology is more than just a collection of different disciplines. In seeking to understand the full story of life in the Universe in a holistic way, astrobiology asks questions that transcend all these individual scientific subjects. Astrobiological research potentially has much broader consequences than simply scientific discovery, as it includes questions that have been of great interest to human beings for millennia (e.g., are we alone?) and raises issues that could affect the way the human race views and conducts itself as a species (e.g., what are our ethical responsibilities to any life discovered beyond Earth?)
    corecore