21 research outputs found

    Graphene catalyzes the reversible formation of a C–C bond between two molecules

    Get PDF
    Carbon deposits are well-known inhibitors of transition metal catalysts. In contrast to this undesirable behavior, here we show that epitaxial graphene grown on Ru(0001) promotes the reversible formation of a C–C bond between −CH2CN and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ). The catalytic role of graphene is multifaceted: First, it allows for an efficient charge transfer between the surface and the reactants, thus favoring changes in carbon hybridization; second, it holds the reactants in place and makes them reactive. The reaction is fully reversible by injecting electrons with an STM tip on the empty molecular orbitals of the product. The making and breaking of the C–C bond is accompanied by the switching off and on of a Kondo resonance, so that the system can be viewed as a reversible magnetic switch controlled by a chemical reactionJ.J.N., F.C., R.M., and A.L.V.d.P. acknowledge the Ministerio de EconomĂ­a y Competitividad (MINECO) project FIS2015-67367-C2-1-P and Comunidad de Madrid projects MAD2D P2013/MIT-3007 and Nanofrontmag S2013/MIT-2850. M.P., C.D., and F.M. acknowledge the MINECO project FIS2016-77889-R and computer time from the CCC-UAM and the Red Española de SupercomputaciĂłn. C.D. acknowledges a RamĂłn y Cajal contract from MINECO (Spain). E.M.P., J.V., and B.N.-O. acknowledge the European Research Council project MINT, ERC-StG-2012-307609. IMDEA Nanoscience acknowledges support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, grant SEV-2016-0686). IFIMAC acknowledges support from the “MarĂ­a de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0377

    A Kinematic Link between Boxy Bulges, Stellar Bars, and Nuclear Activity in NGC 3079 & NGC 4388

    Full text link
    We present direct kinematic evidence for bar streaming motions in two active galaxies with boxy stellar bulges. The Hawaii Imaging Fabry-Perot Interferometer was used on the Canada-France-Hawaii 3.6-m telescope and the University of Hawaii 2.2-m telescope to derive the two-dimensional velocity field of the line-emitting gas in the disks of the Sc galaxy NGC 3079 and the Sb galaxy NGC 4388. In contrast to previous work based on long-slit data, the detection of the bar potential from the Fabry-Perot data does not rely on the existence of inner Lindblad resonances or strong bar-induced shocks. Simple kinematic models which approximate the intrinsic gas orbits as nonintersecting, inclined elliptical annuli that conserve angular momentum characterize the observed velocity fields. Box-shaped bulges in both NGC 3079 and NGC 4388 are confirmed using new near-infrared images to reduce dust obscuration. Morphological analysis of starlight in these galaxies is combined with the gas kinematics derived from the Fabry-Perot spectra to test evolutionary models of stellar bars that involve transitory boxy bulges, and to quantify the importance of such bars in fueling active nuclei. Our data support the evolutionary bar models, but fail to prove convincingly that the stellar bars in NGC 3079 and NGC 4388 directly trigger or sustain the nuclear activity. (abridged)Comment: 31 pages, 18 figures, Latex, requires aaspp4.sty. Accepted for the Astronomical Journal (November issue

    Galactic-Scale Outflow and Supersonic Ram-Pressure Stripping in the Virgo Cluster Galaxy NGC 4388

    Get PDF
    The Hawaii Imaging Fabry-Perot Interferometer (HIFI) on the University of Hawaii 2.2m telescope was used to map the Halpha and [O III] 5007 A emission-line profiles across the entire disk of the edge-on Sb galaxy NGC 4388. We confirm a rich complex of highly ionized gas that extends ~4 kpc above the disk of this galaxy. Low-ionization gas associated with star formation is also present in the disk. Evidence for bar streaming is detected in the disk component and is discussed in a companion paper (Veilleux, Bland-Hawthorn, & Cecil 1999; hereafter VBC). Non-rotational blueshifted velocities of 50 - 250 km/s are measured in the extraplanar gas north-east of the nucleus. The brighter features in this complex tend to have more blueshifted velocities. A redshifted cloud is also detected 2 kpc south-west of the nucleus. The velocity field of the extraplanar gas of NGC 4388 appears to be unaffected by the inferred supersonic (Mach number M ~ 3) motion of this galaxy through the ICM of the Virgo cluster. We argue that this is because the galaxy and the high-|z| gas lie behind a Mach cone with opening angle ~ 80 degrees. The shocked ICM that flows near the galaxy has a velocity of ~ 500 km/s and exerts insufficient ram pressure on the extraplanar gas to perturb its kinematics. We consider several explanations of the velocity field of the extraplanar gas. Velocities, especially blueshifted velocities on the N side of the galaxy, are best explained as a bipolar outflow which is tilted by > 12 degrees from the normal to the disk. The observed offset between the extraplanar gas and the radio structure may be due to buoyancy or refractive bending by density gradients in the halo gas. Velocity substructure in the outflowing gas also suggests an interaction with ambient halo gas.Comment: 29 pages including 5 figures, Latex, requires aaspp4.sty, to appear in ApJ, 520 (July 20, 1999 issue

    Swift observations of the X-ray and UV evolution of V2491 Cyg (Nova Cyg 2008 No. 2)

    Full text link
    We present extensive, high-density Swift observations of V2491 Cyg (Nova Cyg 2008 No. 2). Observing the X-ray emission from only one day after the nova discovery, the source is followed through the initial brightening, the Super-Soft Source phase and back to the pre-outburst flux level. The evolution of the spectrum throughout the outburst is demonstrated. The UV and X-ray light-curves follow very different paths, although changes occur in them around the same times, indicating a link between the bands. Flickering in the late-time X-ray data indicates the resumption of accretion. We show that if the white dwarf is magnetic, it would be among the most magnetic known; the lack of a periodic signal in our later data argues against a magnetic white dwarf, however. We also discuss the possibility that V2491 Cyg is a recurrent nova, providing recurrence timescale estimates.Comment: 12 pages, 8 figure (2 in colour), accepted for publication in MNRA

    A Systematic Study of Mid-Infrared Emission from Core-Collapse Supernovae with Spirits

    Get PDF
    The American Astronomical Society. All rights reserved.We present a systematic study of mid-infrared emission from 141 nearby supernovae (SNe) observed with Spitzer/IRAC as part of the ongoing SPIRITS survey. We detect 8 Type Ia and 36 core-collapse SNe. All Type Ia/Ibc SNe become undetectable within three years of explosion, whereas 22 ± 11% of Type II SNe continue to be detected. Five Type II SNe are detected even two decades after discovery (SN 1974E, 1979C, 1980K, 1986J, and 1993J). Warm dust luminosity, temperature, and a lower limit on mass are obtained by fitting the two IRAC bands, assuming an optically thin dust shell. We derive warm dust masses between 10-6 and 10-2 M o and dust color temperatures between 200 and 1280 K. This observed warm dust could be pre-existing or newly created, but in either case represents a lower limit to the dust mass because cooler dust may be present. We present three case studies of extreme SNe. SN 2011ja (II-P) was over-luminous ([4.5] = -15.6 mag) at 900 days post explosion with increasing hot dust mass, suggesting either an episode of dust formation or intensifying circumstellar material (CSM) interactions heating up pre-existing dust. SN 2014bi (II-P) showed a factor of 10 decrease in dust mass over one month, suggesting either dust destruction or reduced dust heating. The IR luminosity of SN 2014C (Ib) stayed constant over 800 days, possibly due to strong CSM interaction with an H-rich shell, which is rare among stripped-envelope SNe. The observations suggest that this CSM shell originated from an LBV-like eruption roughly 100 years pre-explosion. The observed diversity demonstrates the power of mid-IR observations of a large sample of SNe. © 2017

    The Eruption of the Candidate Young Star ASASSN-15qi

    Get PDF
    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∌3.5\sim 3.5 mag brightening in the VV band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from ∌10,000\sim10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H2_2 is detected in emission from vibrational levels as high as v=11v=11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling
    corecore