121 research outputs found

    Improvement, the Performance of Polyurethane (PUR), Y-290 Resin as Coating of Oil Pipeline by Using Multi-Walled Carbon Nanotubes (MWCNTs)

    Get PDF
    In this study, polyurethane epoxy-Y290 (PUR-Y290) as a matrix material was reinforced by 1%MWCNTs. Polyurethane is a thermoset polymer and using for several applications particularly as coatings of gas and oil pipeline. Polyurethane uses as a liquid coating against the corrosion, and that is caused by the direct exposure for long periods of UV irradiation and humidity. The nanocomposites were prepared by adding 1wt% MWCNTs to polyurethane and mixed by using an ultrasound mixer. Polyueethane-1%MWCNTs composite sample was exposed to accelerate weathering (UV irradiation coming from sunlight, moisture, and salt water spray) during the exposure to different durations 6 months, 12 months and 24 months. Exposed and unexposed samples were investigated and evaluated by thermal and mechanical tests.It was found that the incorporation 1.0%wt of MWCNTs filler, enhanced the thermal stability and improved the mechanical properties during the exposure for long-term life to accelerated weathering conditions, compared with polyurethane coating without MWCNTs filler. These results indicated that polyurethane (liquid coating) nanocomposites have a higher resistance to environmental condition and give more protective against corrosion of oil pipelines and applied as coatings by spray method to protect the oil pipeline surfaces from environmental conditions

    Comparative toxicity of cinnamon oil, cinnamaldehyde and their nano-emulsions against Culex pipiens (L.) larvae with biochemical and docking studies

    Get PDF
    The larvicidal activity of cinnamon oil and its main component, cinnamaldehyde, was compared with their nano-emulsions (NEs) against Culex pipiens mosquito larvae. Oil-in-water (O/W) NEs preparation was based on the coarse emulsion followed by high-energy ultra-sonication. The droplet size, polydispersity index (PDI), viscosity, zeta potential, and pH of NEs were investigated. The droplet sizes of the NEs were 95.67 nm for cinnamon oil and 174.59 nm for cinnamaldehyde. The NEs recorded high negative zeta potentials (-30.0 and -21.20 for cinnamon oil and cinnamaldehyde, respectively). The larvicidal activity results showed that the cinnamaldehyde (LC50 = 94.46 and 72.91 mg/l for T and NE, respectively) had higher activities than cinnamon oil (LC50 = 154.08 and 123.13 mg/l for T and NE, respectively) after 24 h of exposure against C. pipiens larvae. These results proved that NE formulation enhanced the activity of tested compounds against larvae. The in vitro effect on the acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and gamma-aminobutyric acid transaminase (GABA-T) were demonstrated, and the data proved that the NEs formulations were higher than their pure compounds. Non-formulated cinnamon oil and cinnamaldehyde caused 17.26% and 30.83% of AChE, respectively, while their NEs caused 46.40% and 60.59% inhibition. Furthermore, the molecular docking studies indicated that the affinity binding of cinnamaldehyde on AChE and GABA-T was higher than ATPase. This work describes bio-products with potential use against C. pipiens larvae as eco-friendly products

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    The Pierre Auger Observatory Status And Latest Results

    Get PDF
    13

    Astrophysical Interpretation Of Pierre Auger Observatory Measurements Of The Uhecr Energy Spectrum And Mass Composition

    Get PDF
    13
    corecore