30 research outputs found

    How to enhance the sustainability and inclusiveness of smallholder aquaculture production systems in Zambia?

    Get PDF
    Open Access Article; Published online: 29 Sep 2021Fish is a key source of income, food, and nutrition in Zambia, although unlike in the past, capture fisheries no longer meet the national demand for fish. Supply shortfalls created an opportunity to develop the aquaculture sector in Zambia, which is now one of the largest producers of farmed fish (Tilapia spp.) on the continent. In its present form, the aquaculture sector exhibits a dichotomy. It comprises, on the one hand, a smallholder sector that mainly produces for and supplies within local markets, and on the other hand, a burgeoning larger-scale commercial sector consisting of a small number of pioneering lead firms who are (re)shaping how the value chain supplies domestic, mainly urban, markets. A notable challenge confronting the development of the aquaculture value chain in Zambia is ensuring that the larger-scale commercial sector can continue to grow and generate economic benefits for the country, while simultaneously safeguarding inclusive and sustainable growth of smallholder production systems. An in-depth, mixed-methods aquaculture value chain study was carried out in Zambia in 2017 that aimed at providing relevant stakeholders with pertinent information on the value chain's contribution to economic growth and its inclusiveness, as well as its social and environmental sustainability aspects. In this article, we present some key findings from the study to shed light on how the sustainability of smallholder production systems could be enhanced while preserving the growth trend of larger producers in an inclusive way. The study found that the value chain is contributing positively towards economic growth in the country. Smallholder farmers classified as “semi-subsistence” and “commercial” face several albeit somewhat different constraints to production, thus influencing their “sustainability” status. Semi-subsistence smallholders achieve positive (yet negligible) profit margins, and their production system is not environmentally sustainable and the value chain that supports them performs sub-optimally on several social markers. The “commercial” smallholder system is more economically viable and environmentally sustainable. The study juxtaposes these findings with those from the analysis of larger pond and cage-based systems to point to a set of key options Government, research, and development organisations could consider to support smallholder farmers and enhance the sustainability of the semi-subsistence smallholder production system in particular, without overlooking the whole system

    Life cycle assessment of European anchovy (Engraulis encrasicolus) landed by purse seine vessels in northern Spain

    Get PDF
    Purpose: The main purpose of this article is to assess the environmental impacts associated with the fishing operations related to European anchovy fishing in Cantabria (northern Spain) under a life cycle approach. Methods: The life cycle assessment (LCA) methodology was applied for this case study including construction, maintenance, use, and end of life of the vessels. The functional unit used was 1 kg of landed round anchovy at port. Inventory data were collected for the main inputs and outputs of 32 vessels, representing a majority of vessels in the fleet. Results and discussion: Results indicated, in a similar line to what is reported in the literature, that the production, transportation, and use of diesel were the main environmental hot spots in conventional impact categories. Moreover, in this case, the production and transportation of seine nets was also relevant. Impacts linked to greenhouse gas (GHG) emissions suggest that emissions were in the upper range for fishing species captured with seine nets and the value of global warming potential (GWP) was 1.44 kg CO2 eq per functional unit. The ecotoxicity impacts were mainly due to the emissions of antifouling substances to the ocean. Regarding fishery-specific categories, many were discarded given the lack of detailed stock assessments for this fishery. Hence, only the biotic resource use category was computed, demonstrating that the ecosystems' effort to sustain the fishery is relatively low. Conclusions: The use of the LCA methodology allowed identifying the main environmental hot spots of the purse seining fleet targeting European anchovy in Cantabria. Individualized results per port or per vessel suggested that there are significant differences in GHG emissions between groups. In addition, fuel use is high when compared to similar fisheries. Therefore, research needs to be undertaken to identify why fuel use is so high, particularly if it is related to biomass and fisheries management or if skipper decisions could play a role.The authors thank the Ministry of Economy and Competitiveness of the Spanish Government for their financial support via the project GeSAC-Conserva: Sustainable Management of the Cantabrian Anchovies (CTM2013-43539-R) and to Pedro Villanueva-Rey for valuable scientific exchange. Jara Laso thanks the Ministry of Economy and Competitiveness of Spanish Government for their financial support via the research fellowship BES-2014-069368 and to the Ministry of Rural Environment, Fisheries and Food of Cantabria for the data support. Dr. Ian Vázquez-Rowe thanks the Peruvian LCA Network for operational support. Reviewers are also thanked for the valuable and detailed suggestions. The work of Dr. Rosa M. Crujeiras has been funded by MTM2016-76969P (AEI/FEDER, UE)

    Effects of climate and land-use changes on fish catches across lakes at a global scale

    Get PDF
    Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security

    A perspective for reducing environmental impacts of mussel culture in Algeria

    No full text
    Purpose In Algeria, the Ministry of Fisheries and Halieutic Resources has designed a strategic plan for the development of marine aquaculture for the years 2015-2025, which aims at expanding the annual production of Mediterranean mussel from less than 150 metric tonnes year(-1) in 2013 to 7600 metric tonnes year(-1) in 2025. We used Life Cycle Assessment (LCA) for evaluating the environmental impact of suspended mussel culture in Algeria and suggest management practices which could reduce it.Methods In order to estimate the current and perspective impact of this industry, we (1) applied LCA to one of the few farms currently operating in Algeria and (2) investigated two management scenarios for the farms to be established in the future in the same coastal area. The first scenario (Comp_S) represents the continuity with the current situation, in which each farm is competing with the other ones and is therefore managing the production cycle independently. In the second scenario (Coop_S), mussel farms are grouped in an aquaculture management area and shared the same facilities for post-processing harvested mussels before sending them to the market. The midpoint-based CML-IA method baseline 2000 V 3.01 was employed using SimaPro software. Furthermore, we carried out a Monte Carlo simulation, in order to assess the uncertainty in the results.Results and discussion The analysis focused on impact categories related to acidification and global warming potential. We took into account the energy consumptions (electricity and vessel fuel), the rearing infrastructure, including longlines, and a building for stabling, grading, and packing the mussel. Electricity contributes with 38.1 and 31.8 % respectively to global warming potential (GWP) and acidification, while fuel consumption contributes with 19.5 % to GWP and 31.8 % to acidification. Results of this work are compared with other LCA studies recently carried out in France (Aubin and Fontaine 2014) and in Spain (Iribarren et al. 2010c).Conclusions The LCA results show that important reductions in environmental impacts could be attained if the mussel farming activity would be operated according to the cooperative scenario here proposed. In this case, the environmental benefits will be a reduction of 3150 MJ and 156 kg CO2 eq per metric tonne of mussel produced, compared with the alternative scenario. The results of this study suggest that LCA should be applied to the seafood production sector in Algeria, in order to identify best management practices
    corecore