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Abstract 

Purpose The main purpose of this article is to assess the environmental impacts associated with the fishing 

operations related to European anchovy fishing in Cantabria (Northern Spain) under a life cycle approach.  

Methods The Life Cycle Assessment (LCA) methodology was applied for this case study including construction, 

maintenance, use and end of life of the vessels. The functional unit used was 1 kg of landed round anchovy at 

port. Inventory data were collected for the main inputs and outputs of 32 vessels, representing a majority of vessels 

in the fleet. 

Results and discussion Results indicated, in a similar line to what is reported in the literature, that the production, 

transportation and use of diesel were the main environmental hotspots in conventional impact categories. 

Moreover, in this case, the production and transportation of seine nets was also relevant. Impacts linked to 

greenhouse gas (GHG) emissions suggest that emissions were in the upper range for fishing species captured with 

seine nets and the value of Global Warming Potential (GWP) was 1.44 kg CO2 eq per functional unit. The eco-

toxicity impacts were mainly due to the emissions of anti-fouling substances to the ocean. Regarding fishery-

specific categories, many were discarded given the lack of detailed stock assessments for this fishery. Hence, only 

the Biotic Resource Use category was computed, demonstrating that the ecosystems’ effort to sustain the fishery 

is relatively low. 

Conclusions The use of the LCA methodology allowed identifying the main environmental hotspots of the purse 

seining fleet targeting European anchovy in Cantabria. Individualized results per port or per vessel suggested that 

there are significant differences in GHG emissions between groups. In addition, fuel use is high when compared 

to similar fisheries. Therefore, research needs to be undertaken to identify why fuel use is so high, particularly if 
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it is related to biomass and fisheries management or if skipper decisions could play a role. 

Keywords: Engraulis encrasicolus; fuel efficiency; industrial ecology; Life Cycle Assessment; pelagic fisheries; 

purse seining 

 

1. Introduction 

Seafood is increasingly recognized as playing an important role in terms of food supply and security 

worldwide. In fact, the food versus feed debate is also highly related to capture fisheries given the dilemma of 

destining dwindling landings to direct or indirect human consumption (Fréon et al. 2014c). The beneficial effect 

of fish consumption on human health has been related to the high content of n-3 fatty acids, and it has been a 

recurring policy strategy to foster direct human consumption (Zlatanos and Laskaridis 2007). In this context, 

according to Zlatanos and Sagredos (1993), anchovy species are among the best sources of n-3 fatty acids. 

European anchovy (Engraulis encrasicolus, Linnaeus, 1758) is a pelagic species belonging to the 

Engraulidae family. It is distributed along the Atlantic continental shelves of Europe and Africa, into the 

Mediterranean, Adriatic and Aegean seas and further into the Black Sea. It is a short-lived species, with individuals 

generally living between 3 and 5 years. Hence, population levels depend strongly on the incoming year-class 

strength, which is highly variable and largely dependent on environmental factors (Fréon et al. 2005). 

Two different fleets fish for European anchovy in the Bay of Biscay, although they are spatially and 

temporally well separated. On the one hand, Spanish fleets operate mainly in Divisions VIIIc and VIIIb in the 

spring (Figure 1). On the other hand, French vessels operate in Division VIIIa in summer and autumn and in 

Division VIIIb in winter and summer (Pontes et al. 2015). Among all the existing fleets that target European 

anchovy, the purse seining fleet based in the region of Cantabria (Northern Spain) is the main anchovy catching 

fleet in the Bay of Biscay. In this context, anchovy represents the fifth most consumed seafood species in Spain, 

and the second most preferred in Cantabrian households (Eurofish 2012).  
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Figure 1. Geographical boundaries of the International Council for the Exploration of the Sea (ICES) 

subdivisions IV-VIII (Source: FAO, 2016). 
 

The Spanish European anchovy fishery developed rapidly in the 1950s and began its decline in the early 

1970s until the mid-1980s, when the French fishery developed (Villamor and Abaunza 2009). A couple of decades 

later, at the start of the new millennium, the fishery started to fail due to poor recruitment (Pontes et al. 2015). In 

fact, the fishery was closed on July 1st 2005 and reopened in 2006, but it was closed again in 2007 until the end 

of 2009. The fishery has remained open since June 2010 thanks to improved stock performance in the past few 

years (Pontes et al. 2015). 

Cantabria is a small coastal region in the North of Spain where fishing and processing of anchovy is one 

of the main economic revenues in the food industry representing approximately 2% of Cantabria’s Gross Domestic 

Product (GDP) (Ministry of Agriculture, Food and Environment 2015). Anchovy fishing operations started in the 

1900s and reached peak captures in 1965 (82,000 metric tons) to decline dramatically in the 1970s and 80s due to 

overexploitation (García-Cobo 1998). Figure 2 shows anchovy captures from 2006 to 2015 by Cantabrian purse 

seining vessels. As shown, anchovy landings in 2006, when the fishery was closed, were very low. However, once 

the fishery reopened in 2010, the amount of anchovy landed and its economic value fluctuated to reach its highest 

value in 2015, with almost 6700 metric tons of anchovy landed in Cantabrian ports generating economic revenue 

of approximately 13 million euros at first sale. 
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Figure 2. Anchovy landings in Cantabria ports and economic value in the period 2006-2015 (Data adapted from 
the Cantabrian Institute of Statics (ICANE). Grey bar represents anchovy captures and the dark points the value 

of these captures in thousands of €. 
 

Approximately half of the anchovy landed in Cantabria is consumed fresh. The remaining 50% goes to 

factories where 25% is salted and the final 25% is canned (Magrama 2013). In fact, in Cantabria there are 

approximately 70 anchovy canning companies. In 2012, 13,2671 metric tons of canned anchovies were produced, 

which translates into economic revenue that adds up to more than 91 million €. Moreover, the quality of the 

Cantabrian canned anchovy is world-renowned and it is considered a “gourmet product” by consumers due to its 

handmade and traditional manufacture (Laso et al. 2016b).  

Despite the critical overexploitation of the European anchovy fishery, no environmental assessment of 

the industrial operations of this fleet exists in the literature. Although the direct link between an overexploited 

stock and the assessment of other environmental impacts may not be evident to the common public, recent studies 

have demonstrated that stock rebuilding can have an important role in fuel efficiency, which is usually the main 

carrier of GHG emissions and other environmental impact in fishing fleets (Ziegler and Hornborg, 2014; Parker 

et al., 2015). In this context, Life Cycle Assessment (LCA), a standardized framework used to quantify resource 

use and a broad set of environmental impacts of products through their supply chain (ISO 2006a and 2006b), is 

considered a consensus method to evaluate this sort of environmental impacts. In fact, the use of LCA as a method 

to quantify environmental impacts of seafood production systems has emerged rapidly over the 2000-2016 period 

(Ziegler et al. 2016). A comprehensive LCA of the Cantabrian anchovy fishery would be useful to complement 

                                                
1 It should be noted that the region imports substantial amounts of European anchovy from other Spanish regions, 
France or Morocco, and other anchovy species from Peru (Engraulis ringens) and Argentine (Engraulis anchoita) 
to nourish the canning industry. 
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the recent studies regarding the processing of canned anchovies, as well as the management of anchovy residues 

throughout the canning process  (Laso et al. 2016a, 2016b), as well as those linked to stock management (Pontes 

et al. 2015).  

Previous fishery LCA studies, including studies of purse seining fisheries in the North Atlantic, have 

shown that conventional impact categories were heavily associated with fuel combustion in the fishery (Vázquez-

Rowe et al. 2010; Ramos et al. 2011; Almeida et al. 2014). Studies for other similar pelagic fisheries elsewhere, 

such as Peruvian anchoveta, were recently developed by Avadí (2014a, 2014b, 2015) and Fréon (2014a, 2014b, 

2014c).  Hence, this study aims to evaluate the environmental impacts of the Cantabrian purse seining fishery for 

European anchovy for one year of operation (i.e., 2015). The LCA methodology was applied to quantify the 

overall environmental impact of the fishery. Although the study was not extended to other years of operation to 

assess the effect of stock size on environmental impacts due to lack of historical data, a statistical analysis was 

computed to analyze the variability of environmental impacts between vessels and ports. 

2. Materials and Methods 

2.1. Goal and scope definition 

The environmental analysis was based on LCA methodology and assumptions, following ISO 14040 

specification. Moreover, the sampling of the purse seining vessels fulfilled PAS 2050-2 (PAS 2050-2, 2012) 

requirements specific to seafood and other aquatic food products. 

The goal of this LCA study was to assess the environmental impacts associated with the fishing activity 

of European anchovy landings by the Cantabrian purse seining fleet. The functional unit (FU) considered was 1 

kg of landed round anchovy by Cantabrian purse seining vessels in year 2015, reflecting the function of delivering 

raw material for further processing in local canning industries. 

The system under study comprised the phases of a vessel's life cycle: construction, use, maintenance and 

end of life (EoL), including hull and engine production, diesel consumption, antifouling and lubricant oil 

emissions, net and boat paint production and vessel dismantling, as observed in Figure 3. Crew impact was limited 

to the emissions onboard (solid waste and wastewater), but excluding provision of food and transport (Fréon et 

al. 2014b). This assessment constituted a so-called cradle-to-gate study for the product (i.e., European anchovy) 

and a cradle-to-grave study for the main carrier of the fishing operations: the fishing vessels (Guinée et al. 2001). 

Landing operations at port were excluded from the system boundary (see Figure 3), as well as a series of biological 

issues, such as seafloor use, given that their consideration involves impact categories that are not fully developed 

in current LCA methodology (Vázquez-Rowe et al. 2012c). Moreover, electronic devices were excluded from the 
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analysis; however, a brief discussion on their environmental impact is included in the discussion section. 

 

 
Figure 3. System boundary for the anchovy fishing fleet. Elements with dotted lines were excluded from the 
boundary. 
 
2.2. Co-product allocation 

The Cantabrian purse seining fleet performs its activities in a multispecies fishery. Therefore, direct and 

indirect inputs and outputs of the fishing operations, as well as the resulting environmental burdens, need to be 

allocated between European anchovy and the remaining landed by-catch (Ayer et al. 2007). In addition to 

European anchovy, the Cantabrian fleet catches tuna species (mainly Thunnus alalunga), European pilchard 

(Sardina pilchardus), Atlantic mackerel (Scomber scombrus) and Atlantic horse mackerel (Trachurus trachurus). 

For this particular study, three types of allocation were evaluated: mass, economic and energy (see Table 1 for 

details). No major differences between the three types of allocation were observed for the case of European 

anchovy, representing in all scenarios approximately 45% of total landings of the fleet. However, economic 

allocation was discarded based on the fact that landing sale prices in Galicia, a neighboring region in northern 

Spain, were used for the same period to compute this approach due to the lack of regional data (Xunta de Galicia 

2016). Although the values could be used as a proxy of the situation in Cantabria, since landings in different 

Spanish regions tend to be influenced by common economic drivers (i.e., common geographic zone, common 

wholesales, common economic patterns), we were unable to determine the uncertainty behind this estimation. 

Similarly, although tuna is a large pelagic species which is usually sold at a much higher price, its landings are 

concentrated in a very specific window of time towards the end of the summer and beginning of the autumn 

months. Therefore, it is unlikely that seiners will target tuna species rather than small-pelagics throughout most 
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of the year. Energy is another repeatedly used allocation perspective that has been traditionally applied in seafood 

LCA studies (Ayer et al. 2007; Pelletier and Tyedmers 2011). In fact, Pelletier and Tyedmers (2011) defend that 

seafood products are landed and processed based on a need to fulfil the human need for a minimum caloric intake 

and, therefore, the use of energy allocation constitutes a relationship that is causal from a biophysical and social 

perspective. However, based on the fact that the system boundaries were limited to the landing of the fish at port 

in this particular study, mass allocation was chosen as the most appropriate approach context since it is considered 

to better reflect reality over longer time periods and changing economic conditions and constitutes a clearer 

perspective to communicate to the stakeholders in this first stage of the supply chain. 

 
Table 1. Mass, economic and energy allocation factors for the anchovy fishing fleet. Landings represent the 
average value in 2015. 
 

Species 
Landings  

 Mass 
allocation 

Value 
(€/kg)

(1) 
Economic 
allocation 

Energy 
(MJ/kg)

(2) 
Energy 

allocation Mass 
(kg) SD 

European anchovy 196,634 ±103,634 43.5% 1.54 44.3% 2.18 45.9% 
Tuna (Thunnus spp.) 9,938 ±42,157 2.2% 4.09 6.0% 2.42 2.6% 
European pilchard 110,563 ±89,560 24.5% 2.11 34.2% 2.11 24.9% 
Atlantic mackerel 51,188 ±12,545 11.3% 0.70 5.2% 2.05 11.2% 
Atlantic horse 
mackerel 83,353 ±103,240 18.5% 0.84 10.3% 1.72 15.4% 
(1) Source: Xunta de Galicia (2015). http://www.pescadegalicia.gal/ 
(2) Peter Tyedmers, personal communication, September 2011) 
2.3. Data acquisition 

2.3.1. Primary activity data 

Data were collected for year 2015 for a sample of 32 purse seining vessels out of a total of 41 belonging 

to the Cantabrian fishing fleet. These vessels represented 78% of this fleet, which allowed meeting the 

requirements recommended in the PAS 2050 document in terms of sample representativeness of vessels in a 

particular fleet (PAS 2050-2 2012). The percentage represents the number of fishing vessels that provided data 

for the study. Questionnaires on operational aspects and capital goods of the purse seine vessels were delivered to 

all skippers of the 41 vessels; therefore, the sample size also represents the response rate obtained. An average 

lifespan for each vessel of 30 years was considered (SUPERPROP 2012). 

Primary data for fishing vessel operations were obtained from questionnaires filled out by skippers from 

the seven main purse seining ports in Cantabria: Colindres (P1), Santoña (P2), San Vicente de la Barquera (P3), 

Comillas (P4), Laredo (P5), Santander (P6) and Castro Urdiales (P7) (see Figure 4 for their geographical 

http://www.pescadegalicia.gal/
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distribution). Vessel-specific data requested included the overall length, gross tonnage, vessel width, number of 

engines and their propulsive power, hull material and life span. For each vessel, operational data requested 

included the type and amount of fuel used, net consumption and dimensions, ice, lubricant oil, anti-fouling and 

paint, days at sea, crew size and annual catch data. 

 

Figure 4. European anchovy fishing zone and Cantabrian ports. 
 

Anti-fouling and paint were considered important in this study for two reasons: they tend to be linked 

to toxicity impact categories (Hospido and Tyedmers 2005) and skippers reported sending their vessels to the 

docks for maintenance once per year. The composition of the main paints and anti-fouling agents, as well as the 

emissions related to their production, was included in the inventory. These data were obtained from a leading 

world producer. 

The production, transport and consumption of the seine nets were included within the system boundary 

due to the important percentage they represent in the total weight of the fishing vessels (Fréon et al. 2014b). 

Skippers reported that the production of nylon nets has shifted through the past years from Spain, which currently 

produces approximately 20% of total nets, to Portugal (20%) and the Philippines (60%). The composition of the 

nets was made up of nylon (50%), lead (28%), ethylene vinyl acetate (EVA) (20%) and polysteel (2%). These 

materials were produced in Canada, Valencia (Spain), Korea and Alicante (Spain), respectively, according to data 

reported by local retailers. Therefore, there has been an increase in transport that will be taken into account in this 
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study as compared to previous studies in the literature (Vázquez-Rowe et al., 2010). Moreover, it was considered 

that the lifespan of seine nets was roughly 5 years. However, partial repairs are done annually, renewing at least 

25% on an annual basis due to net losses at sea (Vázquez-Rowe et al. 2010). Another important operational input, 

ice, was produced at an ice-making factory. For this, data were obtained from a factory in Colindres, one of the 

fishing ports in the current study, which produced 2,000 metric tons per year. The factory reported using ammonia 

as the cooling agent in its operations. 

Regarding vessel construction, only those impacts associated with the steel used in vessel hulls and 

engines were quantified. To estimate the weight of each vessel, the Light Ship Weight (LSW) as described by 

Freón et al. 2014b was used (Eq 1):  

                  LSW (metric ton) = -263.81 + 0.57 ∙ holding capacity + 43.77 ∙ width              (Eq.1) 

To apply this correlation, the holding capacity and the width data reported by the interviewed skippers 

were used. LSW is based on several statistical models that use the holding capacity and physical dimensions of 

the Peruvian vessels. Fréon and colleagues (2014b) found a high correlation between LSW and the following 

variables: holding capacity (m3), gross tonnage (GT) (unitless index), length and height (m). However, collinearity 

was found between length and height. Moreover, GT was also excluded from the variables due to the high number 

of missing values. Scatter plots of LSW versus each of the tested variables showed linearity, which justifies the 

use of a linear model being the best regression equation (adjusted r2 = 0.79) used in this work. It was considered 

that this correlation was valid for Spanish fleet due to the similarity in terms of holding capacity.  Approximately 

80% of the LSW value was assumed to correspond to the weight of the hull (steel), while 20% corresponded to 

the weight of structural elements and other systems that were not considered in this analysis. Moreover, it was 

assumed that 12% of the hull was replaced every two years for maintenance purposes (Fréon at al. 2014b).  

The weight of the main and auxiliary engines was obtained from a leading world producer according to 

the power data facilitated by skippers (Guascor 2016). The composition modelled for these engines considered 

65% cast iron, 34% chrome steel and 1% white metal alloys (AlCuMg2), and they were replaced once over the 

lifetime of the vessel (Fréon et al. 2014b). It was assumed that 50% of the steel used in vessel hulls and engines 

was recycled. This assumption was based on data from the European Steel Association (Eurofer), which stated 

that 50% of the steel in the market was secondary steel (Bala et al. 2015).  

 

2.3.2. Secondary data 
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Background data regarding the production of diesel fuel were obtained from the ecoinvent® v3.1 

database (Ecoinvent 2016). The process data for diesel production include oil field exploration, crude oil 

production, long distance transportation, oil refining, regional distribution, etc. Additional processes where no 

direct data were available are linked to the production of supply materials, such as materials for vessel 

construction, seine nets, anti-fouling, paint and lubricant oil agents and electricity. To improve data quality and 

consider local conditions, the electricity mix provided by the ecoinvent® database was adapted to the 

characteristics of the Spanish electricity mix of 2013 (Vázquez-Rowe et al. 2015) for those processes occurring 

in Spanish territory. Finally, processes linked to the management of crew residues and fishing activity wastes, as 

well as the EoL of the vessel, were also taken from the ecoinvent® database. 

2.3.3. Un-monitored emissions 

The emissions of carbon dioxide (CO2) resulting from fuel combustion were calculated on the base of 

the EMEP-Corinair Emission Inventory Handbook of 2006 (EMEP-Corinair 2006), while remaining emissions, 

such as nitrogen oxides (NOx), carbon monoxide (CO) and sulphur oxides (SOx) were calculated on the base of 

the revised version of the handbook in 2013 (EMEP/EEA 2013). It is important to point out that, in the current 

study, CO2 emissions resulting from the use of lubricant oil were considered and calculated on the base of the 

IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006), as shown in the following equation: 

            CO2 emissions = LC ∙ CClubricant  ∙ ODUlubricant ∙ 44/12                                 (Eq. 2) 

where LC was the total lubricant consumption (TJ), CClubricant was the carbon content of lubricants (20 metric tons 

C/TJ), ODUlubricant was the Oxidised During Use factor (0.2) and 44/12 was the mass ratio of CO2/C. The loss of 

paint and anti-fouling to the marine environment was set as two thirds of the total employed, as assumed by 

Hospido and Tyedmers (2005). Finally, the environmental impacts linked to crew activities were modelled 

considering the number of crew members. Thereafter, the procedure identified by Fréon et al. 2014, which 

established that 120 L of wastewater is produced per crew member per working day and 0.2 kg of solid waste is 

generated per landed metric ton of fish, was followed. Approximately 38% of these solid residues were hazardous 

waste (mostly rags impregnated with lubricant oil), 26% plastic packaging, 20% other rags, 10% paper and 6% 

organic matter. In this study, it was considered that the hazardous wastes were deposited underground in a 

specialized landfill, whereas the non-hazardous wastes were deposited in a municipal landfill. Moreover, 

according to recycling data from Ecoembes, in Cantabria, 21% of the total plastic and 43% of the total paper was 

recycled in 2015 (Ecoembes 2015). The remaining residues, together with the organic matter, were assumed to be 

incinerated (Plan de Residuos de Cantabria, 2016). Finally, it was assumed that wastewater was collected and sent 

Comentado [J1]: Reviewer 2 (Comment 2) 
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to a municipal wastewater treatment plant (WWTP). Data on the WWTP were obtained from Lorenzo-Toja et al. 

(2015). The selected plant was the WWTP from Ortigueira (Galicia) assuming that its technical and physical 

characteristics were similar to Cantabrian WWTPs. 

2.4. Life Cycle Inventory 

According to the questionnaires obtained, the 32 purse seining vessels landed a total of 14,454 metric 

tons of fresh fish, with European anchovy being the most captured species (6,292 metric tons). The average 

allocated inventory data are shown in Tables 2 and 3.  

 
Table 2. Inputs for European anchovy landed in Cantabrian ports by purse seiners (data reported per functional 

unit:  1 kg of landed round anchovy in a Cantabrian port in year 2015). 

Inputs (from the technosphere) 

Construction 

Materials and fuels Unit Value SD 

Steel (hull) g 10.56 ±3.43 

Cast iron (motor) g 0.336 ±0.139 

Chrome steel (motor) g 0.178 ±0.075 

Aluminium alloy (AlCuMg2) (motor) g 0.005 ±0.002 

Nylon (fishing net) g 5.172 ±1.375 

Lead (fishing net) g 5.143 ±0.888 

Ethylene Vinyl Acetate (EVA) (fishing net) g 2.128 ±0.567 

Polysteel (fishing net) g 0.456 ±0.080 

Use 

Diesel kg 0.34 ±0.14 

Lubricant oil g 2.227 ±0.788 

Ice kg 0.388 ±0.225 

Maintenance (replenishment, fixtures or replacements) 

Steel (hull) g 0.633 ±0.206 
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Cast iron (motor) g 0.011 ±0.004 

Chrome steel (motor) g 5.89∙10-3 ±2.21∙10-3 

Aluminium alloy (AlCuMg2) (motor) g 1.77∙10-4 ±7.08∙10-5 

Nylon (fishing net) g 2.327 ±0.620 

Lead (fishing net) g 2.314 ±0.255 

Ethylene Vinyl Acetate (EVA) (fishing net) g 0.957 ±0.399 

Polysteel (fishing net) g 0.205 ±0.035 

Anti-fouling g 1.747 ±0.573 

Boat paint g 0.354 ±0.117 

End of life (includes recycling during maintenance phase) 

Steel (hull and motor) g 11.38 ±3.64 

Nylon (fishing net) g 7.499 ±1.993 

Ethylene Vinyl Acetate (EVA) (fishing net) g 3.085 ±1.432 

Polysteel (fishing net) g 0.661 ±0.923 

Lead fishing net g 7.457 ±0.930 

 
Table 3. Outputs for European anchovy landed in Cantabrian ports by purse seiners (data reported per functional 

unit: 1 kg of landed round anchovy in a Cantabrian port in year 2015). 

Outputs (to the technosphere) 

Product Unit Value 

European anchovy kg 1 

Residues Unit Value 

Wastewater m3 8.57∙10-4 

Hazardous wastes g 72.19 

Non-hazardous wastes g 37.99 

Plastic g 49.39 

Paper g 18.99 
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Organic matter g 11.40 

Outputs (to the environment) 

Emissions to the ocean Unit Value 

Zinc mg 281 

Copper mg 462 

Ethanol mg 17.50 

Ethyl-benzene mg 41.20 

Xylene mg 148 

4-Methyl-2-pentanone mg 19.40 

Emissions to the atmosphere Unit Value 

CO2 (diesel and lubricant oil) kg 1.093 

CO (diesel) g 2.550 

SO2 (diesel) g 11.90 

SOx (diesel) g 6.890 

NOx (diesel) g 27.70 

NMVOC (diesel) G 1.400 

 
2.5. Life Cycle Impact Assessment 

The Life Cycle Impact Assessment phase was carried out using a mix of impact categories from different 

assessment methods. This rationale was followed in order to account for the most relevant conventional impact 

categories commonly used in LCA studies, following the recommendations provided by the Joint Research Centre 

of the European Commission (ILCD 2011, Hauschild et al. 2013), but also to account for less conventional marine-

related environmental impacts (Ziegler et al. 2016). 

In the first place, the IPCC 2013 assessment method, 100-year time horizon, was used to compute the 

GHG emissions engendered by the analyzed production system (IPCC 2013). The reason for choosing this method 

is linked to the fact that it considers the most updated characterization factors for GHG emissions as recommended 

by the Intergovernmental Panel for Climate Change (IPCC 2013). Secondly, the CML-IA baseline method 

(Guinée et al. 2002) was selected to calculate acidification potential (AP) and eutrophication potential (EP). 

Thirdly, the ReCIPE midpoint (Goedkoop et al. 2009) was used to calculate impacts related to resource depletion: 

water depletion (WD), metal depletion (MD) and fossil depletion (FD). Particulate matter formation (PMF) and 
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photochemical oxidant formation (POF) were also calculated using this assessment method. Finally, the USEtox 

method (Rosenbaum et al. 2008) was selected to calculate human and freshwater toxicity. 

Regarding marine-related impact categories, the biotic resource use (BRU) impact category, as 

implemented by Parker (2011), was also used to monitor the primary production required (PPR) to sustain the 

European anchovy fishery (Pauly and Christensen 1995). The results were reported in terms of removed carbon. 

The selected unit to report PPR calculation was mass of carbon per live weight of fish (g C/kg fish, wet weight). 

The mean trophic level (TL) selected for European anchovy was set at 3.1 ±0.45 (Fishbase 2016; Vázquez-Rowe 

et al. 2012a). 

                                  PPR = [Catch/9] x 10(TL-1)                                                  (Eq. 3) 
 

Lost Potential Yield (LPY), as defined by Emanuelsson et al. 2014, was not applied due to the lack of 

two important parameters to compute this impact category: maximum sustainable yield (MSY) and fishing 

mortality (FMSY). However, the reports from ICES state that the limit reference point for spawning stock biomass 

(Blim) is widely overpassed ever since the fishery was reopened for fishing activities in 2010 (ICES, 2014). Other 

marine-related impact categories that have been presented in the literature, such as seabed disturbance (Ziegler et 

al. 2009), the Global Discard Index (Vázquez-Rowe et al. 2012) or other categories used to monitor 

overexploitation or biomass removal (Langlois et al. 2014, 2015; Woods et al. 2016), were also excluded from 

the scope of the study. Finally, the indicator edible protein energy return on investment (ep-EROI) was also 

calculated in this study. For the computation of the ep-EROI results, renewable and non-renewable energy used 

to support the supply chains under examination were taken into consideration using the Cumulative Energy 

Demand (CED) v2.0 (Vázquez-Rowe et al. 2014a; Tyedmers et al. 2005). SimaPro 8 was the software used for 

the computational implementation of the inventories (Goedkoop et al. 2016).  

2.6. Statistical and sensitivity analysis 

A statistical analysis was conducted in order to determine whether there were any significant differences 

between vessels or groups of vessels in terms of GHG emissions. However, a first limitation that was encountered 

when conducting the statistical analysis, despite having sampled approximately 78% of the total population of 

vessels, was the fact that there were not enough purse seiners sampled per port in order to conduct a meaningful 

statistical test. Moreover, the samples at hand did not correspond to a proper experimental design, since there was 

no randomization in the analyzed vessels or ports. Nevertheless, the available dataset has been used to provide 

some insight on the distribution of GHG emissions. For this, an ANOVA test was proposed (equivalent to a T-
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test in the two-sample situation, in the sense that both test statistics are related), as well as the nonparametric 

equivalent: the Kruskal-Wallis (KW) test. It should be noted that for the results of the ANOVA test to be 

conclusive, the samples must meet homogeneity of variances, using the Levene test, and normality, using the 

Shapiro-Wilk test. 

To complement the statistical analysis, a sensitivity analysis was also performed. Input parameters 

required to describe the supply chain of this production process can generate uncertainty due to their reliance on 

several assumptions. This is the case for LSW, engine weight or the lifespan of vessels and seine nets, among 

other parameters. Therefore, two of these parameters, vessel lifespan and seine net replacement, were evaluated 

in order to identify how their variation can affect environmental impact values. For vessels, the average lifespan 

was modelled for 20 and 40 years, being 30 years the reference value assumed in the main inventory. In the case 

of seine nets, the 5 year replacement period was complemented with a 2 and 10 year analysis. 

3. Results 

3.1. Environmental performance of European anchovy fishery in Cantabria  

According to the results shown in Table 4, the main stage that was responsible for the greater part of the 

environmental impacts was the vessel use stage except for MD and human toxicity-cancer (HTc). More 

specifically, vessel use dominated the contribution to POF (3.07⋅10-2 kg NMVOC eq), PMF (1.09⋅10-2 kg PM10 

eq), AP (2.79⋅10-2 kg SO2 eq), GWP (1.32 kg CO2 eq), FD (4.35⋅10-1 kg oil eq), EU (3.83⋅10-3 kg PO4
3- eq), WD 

(2.29⋅10-3 m3) and freshwater eco-toxicity FEP (3.48⋅10+1 CTUe). On the other hand, vessel construction and 

maintenance were also important contributors MD (3.51⋅10-2 and 3.98⋅10-2 kg Fe eq, respectively). However, their 

contribution to the other categories was in all cases below 10%. The other subsystem included in the analysis, 

vessel EoL, presented contributions in all cases below 1%.  

Impacts related to human toxicity and freshwater eco-toxicity can also be observed in Table 4. Vessel use 

accounted for 90% of the environmental impact for FEP, 56% for human toxicity – non-cancer (HTnc) and 23% 

for HTc. Vessel construction contributed to HTc in 57% and to HTnc in 13%, while vessel maintenance contributed 

20% to HTc and 31% to HTnc. Environmental contribution for the different activities can be consulted in Figure 

S2 in Supporting Material (SM). 

 
Table 4. Environmental impact of fishing 1 kg of European anchovy by purse seiners in Cantabria. GWP: global 
warming potential; AP: acidification potential; EU: eutrophication; WD: water depletion; -MD: metal depletion; 
FD: fossil depletion; POF: photochemical ozone formation; PMF: particulate matter formation; HTc: human 
toxicity, cancer; HTnc: human toxicity, non-cancer; FEP: freshwater ecotoxicity potential. 
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 Unit Vessel 
Construction 

Vessel 
Maintenance 

Vessel  
Use 

Vessel  
EoL 

GWP kg CO2 eq 4.93∙10-2 7.70∙10-2 1.32 5.52∙10-4 

AP kg SO2 eq 3.02∙10-4 6.76∙10-4 2.79∙10-2 4.27∙10-6 

EU kg PO4
- eq 1.20∙10-4 2.76∙10-4 3.83∙10-3 4.86∙10-6 

WD m3 1.06∙10-3 1.93∙10-3 2.29∙10-3 6.81∙10-6 

MD kg Fe eq 3.51∙10-2 3.98∙10-2 1.65∙10-2 4.87∙10-41 

FD kg oil eq 1.47∙10-2 2.70∙10-2 4.35∙10-1 1.56∙10-4 

POF kg NMVOC 1.84∙10-4 3.00∙10-4 3.07∙10-2 2.77∙10-6 

PMF kg PM10 eq 1.25∙10-4 1.82∙10-4 1.09∙10-2 1.61∙10-6 

HTc CTUh 2.43∙10-8 8.47∙10-9 9.67∙10-9 1.37∙10-10 

HTnc CTUh 8.08∙10-8 1.92∙10-7 3.43∙10-7 2.36∙10-9 

FEP CTUe 1.14 2.52 3.48∙10+1 5.89∙10-2 

 
 

As abovementioned, vessel use was the main contributor to most impact categories. However, when 

looking at the results in more detail (see Figure 5), it appears that most environmental burdens generated were 

due to fuel consumption for all impact categories, except for WD, MD, HTnc and FEP. For the rest of impact 

categories, its contribution was in all cases above 88%. Seine net production and transport contributed to 7% in 

GWP, whereas ice production and antifouling and lubricant oil production and emissions showed contributions 

below 1%. In WD and MD the production of the seine net had a relevant contribution, 40% and 20% respectively, 

while the production and use of diesel presented the highest contribution to FD, 89%. The production and 

emissions of antifouling were relevant to HTnc (55%) and FEP (83%). Production of steel for the construction and 

maintenance of vessels and motors presented low contributions in all impact categories, except in terms of MD 

(31%). The management of on board residues presented contributions below 10% in GWP, AP, EU, FD and HTnc, 

whereas these were higher for WD (11%), MD (13%) and FEP (10%). 
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-  
 
Figure 5. Environmental impact potential for the selected conventional impact categories for the average vessel 

per functional unit. 
 
3.2. Biotic Resource Use (BRU) 

The BRU value obtained for European anchovy was 13.99 g C/kg fish. This value is relatively low, in 

line with other small-pelagic species in the literature considering that European anchovy does not have a high TL 

(Parker and Tyedmers 2012). Figure 6 represents the PPR value of European anchovy as compared to the other 

anchovy species that are used in the canning industry in Cantabria. Data on TL were taken from FishBase (2016): 
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European anchovy (Engraulis encrasicolus) 3.1±0.45; Peruvian anchovy (Engraulis ringens) 2.9±0.38; and 

Argentine anchovy (Engraulis anchoita) 2.5±0.002. European anchovy shows a higher PPR value than the other 

species, which, according to Coll et al. (2006), is based on its feeding patterns, more reliant on mesozooplankton, 

whereas Peruvian anchoveta, for instance, feeds mainly on phytoplankton. Nevertheless, it should be noted that 

European anchovy also presents a higher standard error in its PPR values. 

 

Figure 6. Primary Production Required (PPR) value of the European anchovy (Engraulis encrasicolus), Peruvian 

anchovy (Engraulis ringens) and Argentine anchovy (Engraulis anchoita). Data on trophic level (TL), including 

standard error, were taken from FishBase (2016): European anchovy (Engraulis encrasicolus) 3.1±0.45; Peruvian 

anchovy (Engraulis ringens) 2.9±0.38; Argentine anchovy (Engraulis anchoita) 2.5±0.00 
 
3.3. Edible Protein energy return on investment (ep-EROI) 

 The current study assessed the ep-EROI value for the anchovy captured by purse seining fishing vessels 

in Cantabria. The energy provided by anchovy was fixed at 2.18 MJ/kg anchovy (Peter Tyedmers, personal 

communication, September 2011) and the average value of CED was 22.5 MJ.  The ep-EROI value was calculated 

for each vessel of the sample and the results indicated an average value of 12.2%, with a minimum value of 3.3% 

(P5.2) and a maximum value of 30.3% (P4.1).   

4. Discussion 

4.1. Identification of environmental hotspots 

The environmental performance of the European anchovy fishery off the coast of Cantabria led to a first 

finding that the most important environmental impact associated with the operation of the fleet was linked to the 

                                                
2 A standard error of 0.00 was computed for Engraulis anhcoita, according to the data provided by FishBase 
(2016). This value is probably linked to the lack of multiple data points measuring the trophic level of this species. 
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production, transportation and direct combustion of diesel. This result is not new in fisheries LCA studies, since 

most of the available literature highlights the direct use of fuels by vessels as the main environmental carrier in 

most impact categories (e.g., GWP, ODP, FD…). For instance, Fréon et al. (2014) previously presented similar 

results for the Peruvian anchoveta purse seining fleet, showing that the steel fleet presented the lowest fuel use 

intensity worldwide, although fuel production and use remained the main contributing operation. Hull 

construction and maintenance was the second item that contributed the most to environmental impacts. Moreover, 

other authors have also reported similar results for different small pelagic fish species: European pilchard 

(Almeida et al. 2014), Atlantic mackerel (Ramos et al. 2011), or horse mackerel (Vázquez-Rowe et al. 2010), but 

also for some large pelagic fish species, such as tuna or swordfish (Hospido and Tyedmers, 2005; Parker et al. 

2015).  

However, despite the fact that the consumption of diesel was the main hotspot of these analyzed studies, 

the consumption of diesel per kilogram of landed fish was very different (Table 5). Fréon et al. (2014) reported 

the lowest value, 15.6 g diesel/kg of landed fish for anchoveta for the period 2008-2011, while Hospido and 

Tyedmers (2005) reported a value very similar to the one reported in the current study, 364 g diesel/kg fish landed. 

However, it should be noted that in the case of Hospido and Tyedmers, landings were performed by large industrial 

vessels operating in open sea, whereas in the current study purse seiners were smaller in size, landed less amount 

of catch and operated in the Spanish Exclusive Economic Zone (EEZ) along the continental shelf. In the other 

studies, Vázquez-Rowe et al. (2010) reported a value of 176 g diesel/kg fish landed, Almeida et al. (2014) 92 g 

diesel/kg fish landed and Ramos et al. (2011) 27 g diesel/kg fish landed. Pelagic species targeted by trawlers 

presented a much stronger dominance of energy use. Therefore, it appears as if the European anchovy fleet is 

located in the upper range of pelagic species in terms of fuel use intensity (FUI), but still substantially lower than 

trawling fleets targeting pelagics. The data collected for the current study only allowed analyzing one year of 

operation, making it difficult to hypothesize the causes behind this relatively high FUI value. However, previous 

studies have suggested that relevant fuel efficiency improvements can be attained following stock rebuilding 

(Ziegler and Hornborg 2014). Therefore, considering the volatility of the European anchovy fishing stock in the 

Bay of Biscay in the past decade, future research should delve into the role of recruitment, stock size and size of 

individuals to determine whether the apparent recovery of the fishery is gradually translating into fuel savings.   

 

 

Table 5. Diesel consumption of other pelagic species fisheries reported in the literature. 
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Species Unit Fishing gear Value Reference 

European anchovy g diesel/FU Purse seining 340.0 Current study 

Anchoveta g diesel/FU Purse seining 15.6 Fréon et al. 2014 

Sardine g diesel/FU Purse seining 91.5 Almeida et al. 2014 

Atlantic mackerel g diesel/FU Purse seining 26.9 Ramos et al. 2011 

Horse mackerel g diesel/FU Purse seining 176.0 Vázquez-Rowe et al. 2010 

Tuna g diesel/FU Purse seining 364.3 Hospido and Tyedmers 2005 

Tuna g diesel/FU Purse seining 306.4 Parker et al. 2015b 

Atlantic mackerel g diesel/FU Trawling 496.0 Vázquez-Rowe et al. 2010 

Common octopus g diesel/FU Trawling 1287.0 Vázquez-Rowe et al. 2012b 

Pelagic species g diesel/FU Trawling 354.0 Jafarzadeh et al. 2016 

Small pelagic species 
(Europe) g diesel/FU Trawling 149.0 Parker and Tyedmers 2015 

Pelagic species g diesel/FU Coastal seining 56.0  Jafarzadeh et al. 2016 

  

An important limitation of this study is the fact that most operational activities, including the use of 

diesel, were reported on an annual basis. Therefore, it was not possible to disaggregate fuel use per landed species, 

despite the fact that the purse seining fleet from Cantabria has a fairly delimited season for each one of the main 

species it lands. Based on this assumption, it could be hypothesized that different operations and skipper behavior 

when targeting different species throughout the year could translate into an important source of uncertainty in this 

study. 

Anti-fouling emissions to the ocean generated reduced burdens for most impact categories, but its 

contribution to freshwater toxicity is relevant due to the emissions of copper and zinc. However, it should be noted 

that corrosion from vessels is an unexplored impact in seafood LCA studies that may cause certain environmental 

impacts, especially in terms of eco-toxicity.  

The management of non-hazardous wastes had also an important contribution to human and freshwater 

eco-toxicity due to the emissions produced in the incineration process, as well as to water and metal depletion. 

Regarding water depletion, however, it should be noted that the impact category used considers a raw calculation 

of the amount of water used in the production system, without taking into account geographical/regional 

availability or scarcity (Goedkoop et al. 2009). In fact, water footprint has been a repeatedly overlooked impact 

category in fisheries LCA through the years. Results shown in this study demonstrate that total water use (5.29∙10-
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3 m3/FU) represents a relatively low value as compared to most agricultural products (Vázquez-Rowe et al. 2016; 

Lovarelli et al. 2016). However, as shown in Figure 6, WD is distributed evenly throughout several subsystems 

(e.g., seine net production, diesel, ice, waste treatment, etc.). Therefore, considering the variety of water sources 

included in the inventory, the use of more refined water-related characterization factors, as those recently released 

in the AWARE method, may provide interesting insights linked to the water footprint of seafood products (Boulay 

et al., 2015; WULCA, 2016). 

Vessel and seine net EoL did not represent relevant contributions to the product systems’ environmental 

burdens. This fact leads to the apparent conclusion that EoL may not be key subsystem compared with others. 

Nonetheless, it should be studied in depth, since the study of the EoL of vessels constitutes a major gap in LCA. 

Only some authors have reported some results. For instance, Gilbert et al. (2016) compared two ships under an 

LCA approach analyzing two EoL scenarios: (i) reusing the hull as a whole and (ii) decommissioning the hull. 

Choi (2016) determined the economic feasibility and environmental impacts of three examples of EoL: standard 

ship recycling, substandard ship recycling and reefing. On the other hand, Ko and Gantner (2016) performed an 

environmental and economic analysis to calculate the imbalance in the distribution of the added value and the 

harm to the environment over the lifetime of a ship employing the dismantling as EoL.  

It is important to highlight that in this study electronic components (i.e., radars, sonars, computers, 

screens, etc.) of vessels were not considered. However, these electronic products contain many materials requiring 

special EoL handling, such as lead, mercury, arsenic, chromium, cadmium and plastics capable of releasing, if not 

managed adequately, compounds such as dioxins or furans (Sthiannopkao and Wong 2013). The European Union 

has been adopting a number of community level regulations related to commonly known as e-waste (European 

Commission 2012; European Commission 2011). These measurements include dismantling of parts and 

recyclability of materials, proper collection systems that support separate collection of e-waste (also referred to 

as “waste of electrical and electronic equipment” – WEEE) to reduce disposal in common municipal waste 

streams, and best practices for treatment, recovery and recycling of e-waste (Kahhat et al. 2008). Some authors 

have studied the environmental impact of e-waste treatment via LCA. Song et al. (2012) demonstrated that the 

recovery of metals, glass and plastic from e-waste can generate environmental benefits. Niu et al. (2012) compared 

three scenarios (incineration, manually dismantling and mechanical dismantling) using LCA. Their results showed 

that incineration has the greatest impact, followed by mechanical dismantling. Moreover, incineration has a poor 

reputation because of its emissions of greenhouse gases, acid gases, and dioxins and furans (Margallo et al. 2014). 

For the BRU impact category it can be observed that the Cantabrian purse seining fleet shows relatively 
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low BRU values (Table 6), due to the fact that European anchovy is a species that is situated in a lower TL than 

most fish species landed in Spain (Vázquez-Rowe et al. 2012a). Interestingly, many fisheries worldwide that 

capture species similar to European anchovy send their landing to reduction to produce fishmeal or fish oil (Fréon 

et al. 2014c). In fact, clear examples of this are the Peruvian anchoveta and US menhaden fisheries, sending over 

99% of their catch to reduction (Cashion et al. 2016). However, the European anchovy captured by Cantabrian 

purse seining vessels is used exclusively to process products for direct human consumption – DHC (Laso et al. 

2016a and 2016b). Other low TL species are destined to DHC in Spain, such as European pilchard (Vázquez-

Rowe et al., 2014), tend to be used elsewhere for reduction. There use as DHC demonstrates that there can be a 

potential market as DHC for these species, rather than sending them to more complex, and usually more intensive 

in terms of energy and biotic impact, food supply chains (Cashion et al. 2016). 

Table 6. Biotic Resource Use (BRU) values for other fish species collected in the literature. 

Specie Unit BRU Reference 
European anchovy kg C/kg fish 13,988 Current study 
Peruvian anchovy kg C/kg fish 5,786 Avadí and Fréon 2015 
Gulf menhaden kg C/kg fish 1,721 Parker and Tyedmers 2012 
Antarctic krill kg C/kg fish 1,761 Parker and Tyedmers 2012 
Atlantic herring kg C/kg fish 18,869 Parker and Tyedmers 2012 
Blue whiting kg C/kg fish 133,699 Parker and Tyedmers 2012 

 

 The ep-EROI results provide valuable information regarding energy requirements of the Cantabrian 

purse seining fishing fleet. As observed in Table 7, the value obtained in this study, 12.2%, is similar to those 

obtained in other purse seining fisheries (Vázquez-Rowe et al. 2014a; Ramos et al. 2011), although substantially 

lower than some collected in the literature (Tyedmers 2001). Therefore, despite the values for this fishery being 

in the lower range for pelagic species landed by purse seiners, its results are still considerably better as compared 

to trawlers. 

 

 

Table 7. Edible protein energy return on investment (ep-EROI) values for other pelagic species.  

Species Fishing gear ep-EROI (%) Reference 

European anchovy Purse seining 12.2 Current study 

Atlantic mackerel Purse seining 68.6 Tyedmers 2001 
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Atlantic mackerel Purse seining 17.8 Vázquez-Rowe et al. 2014a 

Tuna Purse seining 14.0 Ramos et al. 2011 

Horse mackerel Purse seining 14.9 Vázquez-Rowe et al. 2014a 

European pilchard Purse seining 18.3 Vázquez-Rowe et al. 2014a 

European hake Trawling 5.6 Vázquez-Rowe et al. 2014a 

Horse mackerel Trawling 6.1 Vázquez-Rowe et al. 2014a 

Atlantic mackerel Trawling 7.3 Vázquez-Rowe et al. 2014a 

 

Other fishery-specific impact categories, such as the seafloor impact potential (SIP) proposed by 

Nilsson and Ziegler (2007), were not applied to this fishery because it was assumed that purse seining was a 

fishing gear that caused negligible direct damage on the seafloor according to the SIP index due to the lack of 

contact with the seabed (Hornborg et al. 2012; Langlois et al. 2015; Ziegler and Valentinsson 2008). However, 

lost nets can potentially create ghost fishing, that is to say, the mortality of fish and other species that takes place 

after all control of fish gear is lost by a fisher (Brown and Macfadyen 2007).  Similarly, discards in this fishery 

were considered minimal and were not computed (Pelletier et al. 2007; Vázquez-Rowe et al. 2011b). 

4.2. Global Warming Potential of the whole life cycle of canned anchovy 

As abovementioned, most European anchovy landed in Cantabria is sent to canning factories. The most 

common final product destined to DHC is a 150 g aluminum can that contains 30 g of processed anchovy and 20 

g of olive oil. It should be noted that during anchovy processing approximately 60% of the wound weight of the 

individuals is lost, including heads, spines and broken anchovies, which are valorized into fishmeal and anchovy 

paste (Laso et al, 2016a). Figure 7 presents the relative GHG emissions emitted in each phase of the life cycle of 

one 50 g can of European anchovy in olive oil. The GWP related to the processing, wholesale and retail, use and 

end of life of canned anchovies was taken from Laso et al. (2016b). For the post-processing stages, it was 

considered that the canned anchovies were transported from the canning plant to a logistic hub, and then to a 

supermarket, and consumed as ready-to-eat products that do not required any cooking. Finally, in the EoL the 

packaging materials were disposed of in a landfill (Laso et al. 2016b). 

Results show that the anchovy fishery would account for 44% of the total GHG emissions, whereas the 

processing stage would represent 45% of total impacts. A previous study in the literature, developed for canned 

sardines in Galicia, established that the processing stage to produce canned sardines represented approximately 

77% of total GWP while the sardine fishery accounted 5% of the total GHG emissions (Vázquez-Rowe et al. 
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2014b). Nevertheless, it should be noted that the processing of canned sardine has additional steps, such as cooking 

or sterilization (Vázquez-Rowe et al. 2014b). Therefore, the energy demand of the canned sardines was higher.  

 

Figure 7. Global Warming Potential of the life cycle of one can of canned anchovies in olive oil. 
 

4.3. Trends between ports and vessels 

When the GWP is analyzed per port, as shown in Figure 8, the values range from 0.82 kg CO2 eq (P4) 

to 1.91 kg CO2 eq (P3). However, it should be noted that ports P6 and P7 only reported one vessel each; therefore, 

the samples for these two ports were not representative. It was expected that ports that were situated in the same 

zone presented similar values of GWP. Interestingly, this fact did not occur. P3 and P4 were situated in West 

Cantabria and they had very different GWP values: 1.91 kg CO2eq and 0.82 kg CO2eq, respectively. Similarly, 

P1, P2 and P5, which are located in Cantabria, presented a wide range of average GHG emissions per FU: 1.21 

kg CO2eq, 1.48 kg CO2eq and 1.86 kg CO2eq, respectively. Therefore, no trend was observed between ports in 

terms of vicinity or based on their proximity to the fishing ground. 

Figure 9 shows the GHG emissions for each of the 32 vessels studied. In this case, the environmental 

impact ranged from 0.55 kg of CO2eq (P4.1) to 4.42 kg of CO2eq (P5.2). It was observed that vessels belonging 

to the same port presented similar values of GWP, i.e. P1, P3 and P4, although there were some vessels that had 

substantially higher GWP values than the average of their ports (e.g., P2.2, P5.2 or P5.6).  

These results suggest the existence of certain differences between vessels in terms of their operational 
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activities. In fact, this variability could be caused by a series of differences in vessel characteristics, such as size, 

age, engine power or tonnage, geographical distribution of the vessel, including landing and base port, 

technological improvements, and a set of operational issues relating to the use of resources, such as gear, fuel or 

ice use (Basurko et al. 2013; Vázquez-Rowe and Tyedmers 2013). In this study, the sample studied was very 

homogeneous, the age of the vessels ranged from 11 to 20 years, the size of the vessels and the engine power were 

very similar and the materials used in vessel construction were practically the same. Moreover, the distance from 

the ports to the fishing zone was between 100 and 150 miles in all cases. Therefore, the technical differences 

between the units assessed appeared to be relatively low. Data gaps and misreporting were also considered to be 

minimal, since data were supplied directly by the skippers. Finally, illegal, unreported and unregulated (IUU) 

fishing were also considered to be low, given the strict controls from authorities and certification agencies 

(González-García et al. 2015). Consequently, these results may be linked to the skill of the skipper and other 

members of the crew to sense where the catch will be available. This fact, usually named as the “skipper effect”, 

has generated high controversy and interest in the literature (Russell and Alexander 1996; Ruttan and Tyedmers 

2007). Several studies reported the fact that the “skipper effect” tends to be more noticeable in seining fleets than 

in other industrial fleets, such as trawlers or long liners (Gaertner et al. 1999). For instance, strong correlations 

between the “skipper effect” and vessel efficiency were identified in the US menhaden purse seining fleets (Ruttan 

and Tyedmers 2007; Vázquez-Rowe and Tyedmers 2013).  

  

 
Figure 8. Global warming potential (GWP) average value of each Cantabrian port. P1: Colindres; P2: Santoña; 

P3: San Vicente de la Barquera; P4: Comillas; P5: Laredo; P6: Santander; P7: Castro Urdiales. 
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Figure 9. Global warming potential (GWP) of the 32 vessels studied. The letter P followed by the first digit 

represents the port of origin for each vessel, P1: Colindres; P2: Santoña; P3: San Vicente de la Barquera; P4: 

Comillas; P5: Laredo; P6: Santander; P7: Castro Urdiales. The second digit represents the number of each vessel 

within its port of origin. 
 

The results obtained from the statistical analysis showed that when plotting the entire data sample on a 

histogram (see Figure S1 in the SM) a clear asymmetry is identified in the distribution of the results. This is also 

highlighted by the inclusion of a kernel density estimator, also shown in Figure S1. Therefore, the sample of 32 

vessels was divided into two groups based on the average GHG emission results per port, as a proxy of the fuel 

used for propulsion. In other words, each vessel was assigned to a high-GWP port group or a low-GWP port group 

on the basis of the GHG emissions port average. In other words, if a certain vessel belongs, for instance, to a low 

fuel consumption/production port, it does not mean that its own GWP value is “low”. Hence, the statistical analysis 

conducted allows determining the homogeneity of vessels in terms of GWP with respect to the port classification. 

For that purpose, and bearing in mind that the considerations described in section 2.6 must be taken into account 

when interpreting the results, two procedures were run: an ANOVA test and a Kruskal-Wallis test. The two groups 

were generated using a cut-off criteria at 1.46 kg CO2 eq, obtaining balanced samples (i.e., 15 units for <1.46 kg 

CO2 eq and 17 units for >1.46 kg CO2 eq; see Figure S2 in the SM). Another cut-off point had been set previously 

at 1.50 kg CO2 eq, but it was finally discarded due to a higher number of atypical values in the sample (see Figure 

S3 in the SM). Hence, the hypotheses were redefined in order to determine whether: i) the average GWP values 

were the same for both groups; and ii) if distribution of values in both groups was the same. 

The first hypothesis was tested using an ANOVA procedure, whereas for the second problem the U 

Mann-Whitney test was run. Nevertheless, considering that there are only two groups in the analysis, the use of 

an ANOVA is equivalent to a T-test. For the ANOVA procedure, normality and homogeneity of variances in the 
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groups must be assessed in advance. For that purpose, Shapiro-Wilk and Levene tests were applied, respectively. 

Results, presented in Table S2 in the SM, demonstrate that there is no evidence to reject the hypothesis 

of normality and homogeneity of variances (with p-values above the usual significance levels of 5% or 1%). 

Therefore, the samples meet the prerequisites to conduct an ANOVA test, as long as a 1% significance level is set 

for the homogeneity of variances. The output of the ANOVA provided a p-value below the usual significance 

levels, indicating that the means in the two groups are different. Similarly, the U Mann-Whitney test shows a p-

value under the significance level, which also indicates that there is a significant difference between the 

distributions of the values in both samples. That is, not only the mean GWP values are different, but also their 

distributions (see Figure S2 in the SM). 

It should be noted that results suggest a significant difference between the two groups of vessels, but 

not of each port individually given the low sample size per port. The sample size and the detail of data for the 

vessels were a limitation to conduct more detailed statistical analyses on the purse seining fleet. However, 

considering that the similarity of the sample in terms of vessel size, captured species or fishing areas is remarkable, 

we hypothesize that the differences could be due to the type of engine that is been used, or due to the skill of the 

skipper/crew. In fact, the “skipper-effect”, although not directly analyzed in this study, has been pointed out as a 

critical issue when considering differences in behavior among vessels (Vázquez-Rowe and Tyedmers 2013; 

Ruttan and Tyedmers 2007; González-García et al. 2015). 

Regarding the sensitivity analysis, Figure 10 displays the GWP, WD, MD and HTc per functional unit 

when the estimated lifespan of the vessels and the seine nets were varied. In terms of GWP and WD, the vessels 

lifespan showed very low variation, whereas the seine nets lifespan presented a variation of WD from 7.74⋅10-3 

m3 (2 years) to 4.47⋅10-3 m3 (10 years). In terms of MD and HTc, the variation of both vessels and seine nets 

lifespan resulted in a change in the environmental impact. In particular, MD and HTc decreased 22% and 33%, 

respectively, when vessels lifespan varied from 20 to 40 years. On the other hand, when seine nets lifespan ranged 

from 2 to 10 years, MD and HTc decreased 21% and 17%, respectively.  
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Figure 10. Graphical representation of the sensitivity analysis. Variation in Global Warming Potential, Water 

Depletion, Metal Depletion and Human Toxicity - cancer per functional unit based on changes in the estimated 

lifetime of the vessels and seine nets. 

 
5. Conclusion 

 The European anchovy purse seining fleet in northern Spain represents an emblematic and high value-

added fishery. Its closure due to overexploitation at the beginning of the century is probably the cause of the lack 

of a previous LCA study, since every other major pelagic species caught throughout the Spanish northern coast 

has already been reported in the seafood LCA literature. Therefore, this study aimed at filling that gap. For this, 

data on 32 vessels, representing roughly 75% of this fleet, were obtained to elaborate an exhaustive inventory, 

which collected the main inputs and outputs of the construction, use, maintenance and EoL of each vessel. 

The LCA results were driven by diesel production, transportation and use in most conventional impact 

categories. In fact, FUI values appear to be in the upper range for small pelagic species when compared to previous 

fuel intensity studies elsewhere, despite the fact that distances to the fishing grounds are relatively short. The use 

of anti-fouling paints was identified as the main hotspot in toxicity potential, due to the emissions of zinc and 
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copper, whereas the remaining activities, as well as the construction and EoL of the vessel presented lower relative 

contributions. However, we argue that for the latter the repeated exclusion of certain capital goods, such as 

electronic equipment, or a more detailed inventory in terms of vessel construction may hide certain environmental 

impacts, especially in terms of waste generation and treatment. 

A statistical analysis was also carried out to identify the significance of the differing values obtained 

between ports and vessels. However, given the low amount of vessels in the fleet, analysis at a port level was 

discarded. When several ports were aggregated based on the average GHG emissions of their vessels per FU, 

results suggest that there is a significant difference between the ports. Unfortunately, available data were not 

enough to identify the causes of this difference, although we hypothesize that mechanical or temporal 

characteristics of the motors, or the so called “skipper effect” could well explain these trends. 

Future research in the frame of the same project will include the combination of LCA with Data 

Envelopment Analysis, a linear programing management tool, with the aim of identifying the best performing 

fishing vessels in the fleet in terms of environmental efficiency, as well as the sources of inefficiency among the 

inventoried sample. In addition, future progress will be needed in the stock management of the European anchovy 

fishery in order to attain more meaningful assessments in terms of biotic impacts. 
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