26 research outputs found

    OC-0549: Improving the clinical applicability of markerless lung tumour tracking with contrast-enhanced kV imaging

    Get PDF
    In-room kV imaging is widely applied for intrafraction motion compensation in image-guided radiation therapy (IGRT). The low contrast of lung tumours in kV images and the overlap of high-intensity surrounding structures, such as the mediastinum, may limit the applicability of IGRT techniques in lung cancer treatments. The aim of this study is to apply a CT-based contrast enhancement method to improve markerless lung tumour tracking in kV images, thus enhancing the potential of X-raybased image guidance in lung cancer patients

    An image-based method to synchronize cone-beam CT and optical surface tracking

    Get PDF
    open5siThe integration of in-room X-ray imaging and optical surface tracking has gained increasing importance in the field of image guided radiotherapy (IGRT). An essential step for this integration consists of temporally synchronizing the acquisition of X-ray projections and surface data. We present an image-based method for the synchronization of cone-beam computed tomography (CBCT) and optical surface systems, which does not require the use of additional hardware. The method is based on optically tracking the motion of a component of the CBCT/gantry unit, which rotates during the acquisition of the CBCT scan. A calibration procedure was implemented to relate the position of the rotating component identified by the optical system with the time elapsed since the beginning of the CBCT scan, thus obtaining the temporal correspondence between the acquisition of X-ray projections and surface data. The accuracy of the proposed synchronization method was evaluated on a motorized moving phantom, performing eight simultaneous acquisitions with an Elekta Synergy CBCT machine and the AlignRT optical device. The median time difference between the sinusoidal peaks of phantom motion signals extracted from the synchronized CBCT and AlignRT systems ranged between -3.1 and 12.9 msec, with a maximum interquartile range of 14.4 msec. The method was also applied to clinical data acquired from seven lung cancer patients, demonstrating the potential of the proposed approach in estimating the individual and daily variations in respiratory parameters and motion correlation of internal and external structures. The presented synchronization method can be particularly useful for tumor tracking applications in extracranial radiation treatments, especially in the field of patient-specific breathing models, based on the correlation between internal tumor motion and external surface surrogates.Fassi, Aurora; Schaerer, Joël; Riboldi, Marco; Sarrut, David; Baroni, GuidoFassi, Aurora; Schaerer, Joël; Riboldi, Marco; Sarrut, David; Baroni, Guid

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    DEVICE FOR MONITORING POSITION AND MOVEMENTS OF AN EYE, PARTICULARLY SUITABLE FOR OCULAR RADIOTHERAPY

    No full text
    The present invention is about a device for non-invasive monitoring of an eye position and ocular movements of a patient, comprising: - a housing body (2) having at least one through opening (2a); - a plurality of light sources (3) housed in said housing body (2); - a plurality of sensor means (4) housed in said housing body (2); - deflector means (6) for invisible radiation (RL) supplied, in use, by said plurality of light sources (3) and reflected by said eye (O) under examination; - support means (8) that can be adjusted for said housing body (2); - at least one program data processing and control unit (9). The support means (8) can be adjusted in such a way that the through opening (2a) of the housing body (2) can be placed at the eye (O) under examination so that the invisible radiation hits the eye (O) frontally. The program data processing and control unit (9) is designed to calculate instant-by-instant the position and orientation of a suitable three-dimensional reference system integral with the eye with respect to a predetermined three-dimensional reference system

    Tumour tracking method based on a 4D CT breathing motion model driven by an external surface surrogate

    No full text
    International audiencePurpose To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy.Methods and Materials The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging. The baseline parameter is adapted to the interfraction variations obtained from the daily cone beam (CB) CT scan. The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface imaging device. The developed method was tested on a database of 7 lung cancer patients, including the synchronized information on internal and external respiratory motion during a CBCT scan.Results About 30 seconds of simultaneous acquisition of CBCT and optical surface images were analyzed for each patient. The tumor trajectories identified in CBCT projections were used as reference and compared with the target trajectories estimated from surface displacement with the a priori motion model. The resulting absolute differences between the reference and estimated tumor motion along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not exceed 7% of the breathing cycle length.Conclusions We investigated a tumor tracking method that integrates breathing motion information provided by the 4-dimensional planning CT with surface imaging at the time of treatment, representing an alternative approach to point-based external-internal correlation models. Although an in-room radiograph-based assessment of the reliability of the motion model is envisaged, the developed technique does not involve the estimation and continuous update of correlation parameters, thus requiring a less intense use of invasive imaging
    corecore