445 research outputs found

    Can one have preroughening of vicinal surfaces?

    Full text link
    We discuss the possibility that, besides roughening, a vicinal surface could display preroughening (PR), and consider the possible mechanisms for its promotion. Within the framework of a terrace-step-kink model, it turns out that a PR transition is possible, and could be induced by a short-range repulsion between parallel kinks along the same step or on adjacent steps, or even by some kind of extended range step-step repulsion. We discuss the possible relevance of this phenomenon to the anomalous roughening behaviour recently reported for Ag(115).Comment: 9 pages, 3 postscript figures, submitted to Surface Scienc

    Roughening of close-packed singular surfaces

    Get PDF
    An upper bound to the roughening temperature of a close-packed singular surface, fcc Al (111), is obtained via free energy calculations based on thermodynamic integration using the embedded-atom interaction model. Roughening of Al (111) is predicted to occur at around 890 K, well below bulk melting (933 K), and it should therefore be observable, save for possible kinetic hindering.Comment: RevTeX 4 pages, embedded figure

    Shortening delivery times of intensity modulated proton therapy by reducing proton energy layers during treatment plan optimization

    Get PDF
    Purpose To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system "Erasmus-iCycle." The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust "time-efficient plan" (with energy layer reduction) with a robust "standard clinical plan" (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases. Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs

    The impact of technology on the changing practice of lung SBRT

    Get PDF
    Stereotactic body radiotherapy (SBRT) for lung tumours has been gaining wide acceptance in lung cancer. Here, we review the technological evolution of SBRT delivery in lung cancer, from the first treatments using the stereotactic body frame in the 1990's to modern developments in image guidance and motion management. Finally, we discuss the impact of current technological approaches on the requirements for quality assurance as well as future technological developments

    Individualized Nonadaptive and Online-Adaptive Intensity-Modulated Radiotherapy Treatment Strategies for Cervical Cancer Patients Based on Pretreatment Acquired Variable Bladder Filling Computed Tomography Scans

    Get PDF
    PurposeTo design and evaluate individualized nonadaptive and online-adaptive strategies based on a pretreatment established motion model for the highly deformable target volume in cervical cancer patients.Methods and MaterialsFor 14 patients, nine to ten variable bladder filling computed tomography (CT) scans were acquired at pretreatment and after 40 Gy. Individualized model-based internal target volumes (mbITVs) accounting for the cervix and uterus motion due to bladder volume changes were generated by using a motion-model constructed from two pretreatment CT scans (full and empty bladder). Two individualized strategies were designed: a nonadaptive strategy, using an mbITV accounting for the full-range of bladder volume changes throughout the treatment; and an online-adaptive strategy, using mbITVs of bladder volume subranges to construct a library of plans. The latter adapts the treatment online by selecting the plan-of-the-day from the library based on the measured bladder volume. The individualized strategies were evaluated by the seven to eight CT scans not used for mbITVs construction, and compared with a population-based approach. Geometric uniform margins around planning cervix–uterus and mbITVs were determined to ensure adequate coverage. For each strategy, the percentage of the cervix–uterus, bladder, and rectum volumes inside the planning target volume (PTV), and the clinical target volume (CTV)-to-PTV volume (volume difference between PTV and CTV) were calculated.ResultsThe margin for the population-based approach was 38 mm and for the individualized strategies was 7 to 10 mm. Compared with the population-based approach, the individualized nonadaptive strategy decreased the CTV-to-PTV volume by 48% ± 6% and the percentage of bladder and rectum inside the PTV by 5% to 45% and 26% to 74% (p < 0.001), respectively. Replacing the individualized nonadaptive strategy by an online-adaptive, two-plan library further decreased the percentage of bladder and rectum inside the PTV (0% to 10% and −1% to 9%; p < 0.004) and the CTV-to-PTV volume (4–96 ml).ConclusionsCompared with population-based margins, an individualized PTV results in better organ-at-risk sparing. Online-adaptive radiotherapy further improves organ-at-risk sparing
    • …
    corecore