79 research outputs found

    Photoelectrolytic oxidation of organic species at mesoporous tungsten trioxide film electrodes under visible light illumination

    Get PDF
    Operation of a photoelectrolyser fitted with a semitransparent semiconducting WO3 film photoanode is described. Due to its band-gap energy of 2.5eV, the photoresponse of the WO3 electrode extends into the blue part of the visible spectrum up to 500nm. The WO3 photoanode exhibits particularly high incident photon-to-current efficiencies for the oxidation of several organic species with the maximum occurring at ca. 400nm. Experiments conducted under simulated AM 1.5 solar illumination demonstrated efficient photodegradation of a variety of organic chemicals including small organic molecules as well as EDTA and anthraquinonic Acid Blue 80 dye. Although, due to the inherent mass transport limitations, the described device appears best suited to the treatment of industrial wastewater containing from 100ppm to few gL−1 of impurities, almost complete removal of organic carbon was observed in several photoelectrolysis runs. This is apparently associated with the concomitant photooxidation of sulphate-based supporting electrolyte resulting in the formation of a powerful chemical oxidant-persulphat

    Modification des polymÚres conducteurs avec de petites particules métalliques; propriétés des films de polypyrrole et de polyaniline platines

    Get PDF
    The properties of two π-conjugated conducting polymers, polypyrrole, and polyaniline, modified with small amounts of Pt, have been investigated. Both polymers were prepared by electrochemical (cyclic voltammetric) polymerization in the form of thin films (less than 1 ÎŒm for polypyrrole, ca. 50-ÎŒm thick for polyaniline). It is shown that incorporation, via electrodeposition, of small amount of dispersed Pt particles, inside the polymer film, leads to radical change of its properties. Thus, the polypyrrole film electrode containing ca. 200 ÎŒg · cm-2 of Pt exhibits remarkably stable electrocatalytic activity towards anodic oxidation of an important fuel cell reactant – CH3OH. In contrast with the bulk Pt metal or the Pt dispersed on other supports, a polypyrrole/Pt composite does apparently not undergo poisoning, even in the course of prolonged oxidation runs. We show also that the incorporation of Pt microparticles, into several tens of ÎŒm thick polyniline films, results in a large enhancement of their redox switching rate between isolating and conducting states and vice versa

    The electronic structure of iridium oxide electrodes active in water splitting

    Get PDF
    Iridium oxide based electrodes are among the most promising candidates for electrocatalyzing the oxygen evolution reaction, making it imperative to understand their chemical/electronic structure. However, the complexity of iridium oxide's electronic structure makes it particularly difficult to experimentally determine the chemical state of the active surface species. To achieve an accurate understanding of the electronic structure of iridium oxide surfaces, we have combined synchrotron-based X-ray photoemission and absorption spectroscopies with ab initio calculations. Our investigation reveals a pre-edge feature in the O K-edge of highly catalytically active X-ray amorphous iridium oxides that we have identified as O 2p hole states forming in conjunction with IrIII. These electronic defects in the near-surface region of the anionic and cationic framework are likely critical for the enhanced activity of amorphous iridium oxides relative to their crystalline counterparts

    Review of the anatase to rutile phase transformation

    Full text link
    • 

    corecore