39 research outputs found

    A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers

    Get PDF
    We develop a novel Time Projection Chamber (TPC) concept suitable for deployment in kilotonne-scale detectors, with a charge-readout system free from reconstruction ambiguities, and a robust TPC design that reduces high-voltage risks while increasing the coverage of the light-collection system and maximizing the active volume. This novel concept could be used as a far detector module in the Deep Underground Neutrino Experiment (DUNE). For the charge-readout system, we used the charge-collection pixels and associated application-specific integrated circuits currently being developed for the liquid argon (LAr) component of the DUNE Near Detector design, ArgonCube. In addition, we divided the TPC into a number of shorter drift volumes, reducing the total voltage used to drift the ionization electrons, and minimizing the stored energy per TPC. Segmenting the TPC also contains scintillation light, allowing for precise trigger localization and a more expansive light-readout system. Furthermore, the design opens the possibility of replacing or upgrading components. These augmentations could substantially improve the reliability and the sensitivity, particularly for low-energy signals, in comparison to traditional monolithic LArTPCs with projective-wire charge readouts

    The KLEVER Survey: spatially resolved metallicity maps and gradients in a sample of 1.2 < z < 2.5 lensed galaxies

    Get PDF
    We present near-infrared observations of 42 gravitationally lensed galaxies obtained in the framework of the KMOS Lensed Emission Lines and VElocity Review (KLEVER) Survey, a programme aimed at investigating the spatially resolved properties of the ionized gas in 1.2 3σ) ‘inverted’ gradients are also found, showing an anticorrelation between metallicity and star formation rate density on local scales, possibly suggesting recent episodes of pristine gas accretion or strong radial flows in place. Nevertheless, the individual metallicity maps are characterized by a variety of different morphologies, with flat radial gradients sometimes hiding non-axisymmetric variations on kpc scales, which are washed out by azimuthal averages, especially in interacting systems or in those undergoing local episodes of recent star formation

    Sub-Femto- g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

    Get PDF
    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s−2/Hz, or (0.54±0.01)×10−15  g/Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/Hz, about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s−2/Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.CNES 1316634/CNRS 103747UnivEarthS Labex program/ANR-10-LABX-0023UnivEarthS Labex program/ANR-11-IDEX-0005-02DLRFederal Ministry for Economic Affairs and Energy/FKZ 50OQ0501Federal Ministry for Economic Affairs and Energy/FKZ 50OQ1601Agenzia Spaziale ItalianaInstituto Nazionale di Fisica NucleareAYA2010-15709 (MICINN)ESP2013-47637-P (MINECO)ESP2015-67234-P (MINECO)Fundacion General CSICSwiss Space Office (SSO)Swiss National Science FoundationUnited Kingdom Space Agency (UKSA)University of GlasgowUniversity of BirminghamImperial CollegeScottish Universities Physics Alliance (SUPA)U.S. National Aeronautics and Space Administration (NASA

    French Roadmap for complex Systems 2008-2009

    Get PDF
    This second issue of the French Complex Systems Roadmap is the outcome of the Entretiens de Cargese 2008, an interdisciplinary brainstorming session organized over one week in 2008, jointly by RNSC, ISC-PIF and IXXI. It capitalizes on the first roadmap and gathers contributions of more than 70 scientists from major French institutions. The aim of this roadmap is to foster the coordination of the complex systems community on focused topics and questions, as well as to present contributions and challenges in the complex systems sciences and complexity science to the public, political and industrial spheres

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    First measurement of νμ charged-current π⁰ production on argon with the MicroBooNE detector

    Get PDF
    We report the first measurement of the flux-integrated cross section of νμ charged-current single π0 production on argon. This measurement is performed with the MicroBooNE detector, an 85 ton active mass liquid argon time projection chamber exposed to the Booster Neutrino Beam at Fermilab. This result on argon is compared to past measurements on lighter nuclei to investigate the scaling assumptions used in models of the production and transport of pions in neutrino-nucleus scattering. The techniques used are an important demonstration of the successful reconstruction and analysis of neutrino interactions producing electromagnetic final states using a liquid argon time projection chamber operating at the Earth’s surface

    First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers

    Get PDF
    Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environment
    corecore