287 research outputs found

    Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways

    Get PDF
    A key step of mitosis is the congression of chromosomes to the spindle equator. Congression is driven by at least two distinct mechanisms: (1) kinetochores slide along the microtubule lattice using the plus-end directed CENP-E motor, and (2) kinetochores biorientating near the pole move to the equator through microtubule depolymerisation-coupled pulling. Here, we show that CENP-Q - a subunit of the CENP-O complex (comprising CENP-O, CENP-P, CENP-Q and CENP-U) that targets polo-like kinase (Plk1) to kinetochores - is also required for the recruitment of CENP-E to kinetochores. We further reveal a CENP-E recruitment-independent role for CENP-Q in depolymerisation-coupled pulling. Both of these functions are abolished by a single point mutation in CENP-Q (S50A) - a residue that is phosphorylated in vivo. Importantly, the S50A mutant does not affect the loading of Plk1 onto kinetochores and leaves the CENP-O complex intact. Thus, the functions of CENP-Q in CENP-E loading and depolymerisation-coupled pulling are independent from its role in Plk1 recruitment and CENP-O complex stabilisation. Taken together, our data provide evidence that phosphoregulation of CENP-Q plays a central function in coordinating chromosome congression mechanisms

    Body Size and Bite Force of Stray and Feral Cats - Are Bigger or Older Cats Taking the Largest or More Difficult to Handle Prey

    Get PDF
    As carnivorans rely heavily on their head and jaws for prey capture and handling, skull morphology and bite force can therefore reflect their ability to take larger or more difficult-to-handle prey. For 568 feral and stray cats (Felis catus), we recorded their demographics (sex and age), source location (feral or stray) and morphological measures (body mass, body condition); we estimated potential bite force from skull measurements for n = 268 of these cats, and quantified diet composition from stomach contents for n = 358. We compared skull measurements to estimate their bite force and determine how it varied with sex, age, body mass, body condition. Body mass had the strongest influence of bite force. In our sample, males were 36.2% heavier and had 20.0% greater estimated bite force (206.2 ± 44.7 Newtons, n = 168) than females (171.9 ± 29.3 Newtons, n = 120). However, cat age was the strongest predictor of the size of prey that they had taken, with older cats taking larger prey. The predictive power of this relationship was poor though (r2 \u3c 0.038, p \u3c 0.003), because even small cats ate large prey and some of the largest cats ate small prey, such as invertebrates. Cats are opportunistic, generalist carnivores taking a broad range of prey. Their ability to handle larger prey increases as the cats grow, increasing their jaw strength, and improving their hunting skills, but even the smallest cats in our sample had tackled and consumed large and potentially ‘dangerous’ prey that would likely have put up a defence

    Factors shaping the lived experience of resettlement for former refugees in regional Australia

    Get PDF
    Refugees experience traumatic life events with impacts amplified in regional and rural areasdue to barriers accessing services. This study examined the factors influencing the lived experienceof resettlement for former refugees in regional Launceston, Australia, including environmental,social, and health-related factors. Qualitative interviews and focus groups were conducted withadult and youth community members from Burma, Bhutan, Sierra Leone, Afghanistan, Iran,and Sudan, and essential service providers (n = 31). Thematic analysis revealed four factorsas primarily influencing resettlement: English language proficiency; employment, education andhousing environments and opportunities; health status and service access; and broader socialfactors and experiences. Participants suggested strategies to overcome barriers associated with thesefactors and improve overall quality of life throughout resettlement. These included flexible Englishlanguage program delivery and employment support, including industry-specific language courses;the provision of interpreters; community events fostering cultural sharing, inclusivity and promotingwell-being; and routine inclusion of nondiscriminatory, culturally sensitive, trauma-informed practicesthroughout a former refugee’s environment, including within education, employment, housing andservice settings

    Natural recovery of genetic diversity by gene flow in reforested areas of the endemic Canary Island pine, Pinus canariensis

    Full text link
    The endemic pine, Pinus canariensis, forms one of the main forest ecosystems in the Canary Islands. In this archipelago, pine forest is a mosaic of natural stands (remnants of past forest overexploitation) and artificial stands planted from the 1940's. The genetic makeup of the artificially regenerated forest is of some concern. The use of reproductive material with uncontrolled origin or from a reduced number of parental trees may produce stands ill adapted to local conditions or unable to adapt in response to environmental change. The genetic diversity within a transect of reforested stands connecting two natural forest fragments has been studied with nuclear and chloroplast microsatellites. Little genetic differentiation and similar levels of genetic diversity to the surrounding natural stands were found for nuclear markers. However, chloroplast microsatellites presented lower haplotype diversity in reforested stands, and this may be a consequence of the lower effective population size of the chloroplast genome, meaning chloroplast markers have a higher sensitivity to bottlenecks. Understory natural regeneration within the reforestation was also analysed to study gene flow from natural forest into artificial stands. Estimates of immigration rate into artificially regenerated forest were high (0.68-0.75), producing a significant increase of genetic diversity (both in chloroplast and nuclear microsatellites), which indicates the capacity for genetic recovery for P. canariensis reforestations surrounded by larger natural stands

    Recruitment, retention, and training of people with type 2 diabetes as diabetes prevention mentors (DPM) to support a healthcare professional-delivered diabetes prevention program: the Norfolk Diabetes Prevention Study (NDPS)

    Get PDF
    This is the final version. Available on open access from BMJ Publishing Group via the DOI in this recordData availability statement: Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information.Objective: Intensive lifestyle interventions reduce the risk of type 2 diabetes in populations at highest risk, but staffing levels are usually unable to meet the challenge of delivering effective prevention strategies to a very large at-risk population. Training volunteers with existing type 2 diabetes to support healthcare professionals deliver lifestyle interventions is an attractive option. Methods: We identified 141 973 people at highest risk of diabetes in the East of England, screened 12 778, and randomized 1764 into a suite of type 2 diabetes prevention and screen detected type 2 diabetes management trials. A key element of the program tested the value of volunteers with type 2 diabetes, trained to act as diabetes prevention mentors (DPM) when added to an intervention arm delivered by healthcare professionals trained to support participant lifestyle change. Results: We invited 9951 people with type 2 diabetes to become DPM and 427 responded (4.3%). Of these, 356 (83.3%) were interviewed by phone, and of these 131 (36.8%) were interviewed in person. We then appointed 104 of these 131 interviewed applicants (79%) to the role (mean age 62 years, 55% (n=57) male). All DPMs volunteered for a total of 2895 months, and made 6879 telephone calls to 461 randomized participants. Seventy-six (73%) DPMs volunteered for at least 6 months and 66 (73%) for at least 1 year. Discussion: Individuals with type 2 diabetes can be recruited, trained and retained as DPM in large numbers to support a group-based diabetes prevention program delivered by healthcare professionals. This volunteer model is low cost, and accesses the large type 2 diabetes population that shares a lifestyle experience with the target population. This is an attractive model for supporting diabetes prevention efforts.National Institute for Health Research (NIHR

    P2X receptor signaling inhibits BDNF-mediated spiral ganglion neuron development in the neonatal rat cochlea.

    Get PDF
    Type I and type II spiral ganglion neurons (SGN) innervate the inner and outer hair cells of the cochlea, respectively. This neural system is established by reorganization of promiscuous innervation of the hair cells, immediately before hearing is established. The mechanism for this synaptic reorganization is unresolved but probably includes regulation of trophic support between the hair cells and the neurons. We provide evidence that P2X receptors (ATP-gated ion channels) contribute such a mechanism in the neonatal rat cochlea. Single-cell quantitative RT-PCR identified the differential expression of two P2X receptor subunits, splice variant P2X(2)(-3) and P2X(3), in a 1:2 transcript ratio. Downregulation of this P2X(2-3/3) receptor coincided with maturation of the SGN innervation of the hair cells. When the P2X(2-3) and P2X(3) subunits were co-expressed in Xenopus oocytes, the resultant P2X receptor properties corresponded to the SGN phenotype. This included enhanced sensitivity to ATP and extended agonist action. In P4 spiral ganglion explants, activation of the P2X receptor signaling pathway by ATPgammaS or alpha,betaMeATP inhibited BDNF-induced neurite outgrowth and branching. These findings indicate that P2X receptor signaling provides a mechanism for inhibiting neurotrophin support of SGN neurites when synaptic reorganization is occurring in the cochlea

    Recruitment, retention, and training of people with type 2 diabetes as diabetes prevention mentors (DPM) to support a healthcare professional-delivered diabetes prevention program:The Norfolk Diabetes Prevention Study (NDPS)

    Get PDF
    Objective: Intensive lifestyle interventions reduce the risk of type 2 diabetes in populations at highest risk, but staffing levels are usually unable to meet the challenge of delivering effective prevention strategies to a very large at-risk population. Training volunteers with existing type 2 diabetes to support healthcare professionals deliver lifestyle interventions is an attractive option. Methods: We identified 141 973 people at highest risk of diabetes in the East of England, screened 12 778, and randomized 1764 into a suite of type 2 diabetes prevention and screen detected type 2 diabetes management trials. A key element of the program tested the value of volunteers with type 2 diabetes, trained to act as diabetes prevention mentors (DPM) when added to an intervention arm delivered by healthcare professionals trained to support participant lifestyle change. Results: We invited 9951 people with type 2 diabetes to become DPM and 427 responded (4.3%). Of these, 356 (83.3%) were interviewed by phone, and of these 131 (36.8%) were interviewed in person. We then appointed 104 of these 131 interviewed applicants (79%) to the role (mean age 62 years, 55% (n=57) male). All DPMs volunteered for a total of 2895 months, and made 6879 telephone calls to 461 randomized participants. Seventy-six (73%) DPMs volunteered for at least 6 months and 66 (73%) for at least 1 year. Discussion: Individuals with type 2 diabetes can be recruited, trained and retained as DPM in large numbers to support a group-based diabetes prevention program delivered by healthcare professionals. This volunteer model is low cost, and accesses the large type 2 diabetes population that shares a lifestyle experience with the target population. This is an attractive model for supporting diabetes prevention efforts

    Reconstitution of a 26-Subunit human kinetochore reveals cooperative microtubule binding by CENP-OPQUR and NDC80

    Get PDF
    The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore's microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex. [Abstract copyright: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
    • 

    corecore