157 research outputs found
Conditions chimiques contrôlant l'atténuation naturelle des BTEX et solvants chlorés : un état des connaissances
L'atténuation naturelle des BTEX (Benzène, Toluène, Ethyl-benzène, Xylène) et des solvants chlorés est de plus en plus étudiée en raison des potentialités offertes par cette technique de gestion. Cet article, après avoir présenté les aspects abiotiques de l'atténuation détaille les conditions chimiques nécessaires à la réalisation des réactions de biodégradation des polluants organiques. Les aspects thermodynamiques sont abordés afin de décliner les réactions possibles et celles qui ne le sont pas selon les environnements chimiques. La dégradation des BTEX est focalisée sur le benzène, produit le plus toxique et le moins dégradable sur la plupart des sites. Les détails de la dégradation du benzène sur le terrain sont analysés dans la littérature et leur comparaison permet de décrire les mécanismes responsables de celle-ci. Dans le cas des solvants chlorés, l'attention est portée sur le TCE (Trichloréthylène), produit le plus couramment rencontré sur les sites pollués. Une mise en parallèle des évolutions de teneurs observées et des conditions chimiques locales permet de mettre en évidence les conditions nécessaires à la dégradation du TCE, et de ses congénères, ainsi que les cinétiques de dégradation dans différentes conditions. La mise en évidence du rôle prépondérant des conditions chimiques conduit à remettre en cause l'utilisation répandue des constantes de dégradation du premier ordre et donne des pistes pour les modèles nécessaires à une prédiction plus fine de l'atténuation naturelle.The increasing reliance on natural attenuation in dealing with contaminated sites in North America is the consequence of:1. the extremely long duration and high cost of aquifer rehabilitation by classical methods, and 2. the discovery of natural biodegradation in many different situations. However, the use of this management technique is questionable, as intrinsic biodegradation is highly dependent on chemical conditions and particularly on redox equilibria. This paper describes the role of these chemical conditions on BTEX and chlorinated solvent attenuation and, by analyzing the current research, we try to define current limits of the predictability of natural attenuation in field conditions.Natural attenuation is defined as the sum of processes able to decrease the pollutant concentration at a sampling point in an aquifer. Several physical processes such as dispersion, retardation and solubility play a role in natural attenuation. However, only biodegradation can significantly reduce the overall amount of pollutants in an aquifer, thereby allowing the pollutant concentration to reach the low levels that are required by regulations. The physical processes cited above can be modelled at a site to account for their effect, but the main focus is on biodegradation.A detailed analysis of the basic thermodynamics of redox reactions involved in biodegradation is necessary to describe the reactions that can potentially occur. A rough analysis shows that BTEX is mainly degraded by oxidation and therefore is degraded more efficiently in aerobic media. However, toluene (and sometime ethylbenzene and xylene) can be degraded by fermentation and thus degradation occurs even in methanogenic conditions. In contrast, chlorinated solvents are degraded mainly by reduction, with the exception of c-DCE (cis-dichloroethylene) and VC (vinyl chloride), which are degraded by reduction and oxidation, thus having two degradative pathways. An overall comparison of reaction rates obtained from laboratory and field experiments clearly demonstrates that under field conditions the supply of redox reactants is a limiting factor in the reaction kinetics.Degradation of BTEX under field conditions has been widely documented, and toluene ethylbenzene and xylene degradation occurred in almost all chemical environments. The most persistent product observed in almost all the studies was benzene. Due to its persistence, and also its carcinogenic and toxic properties, we focussed on the results obtained for benzene. The kinetic constant for degradation of benzene under most field conditions ranged from almost no degradation in the reduced parts of the plume to fast degradation at the oxygenated border. Degradation under nitrate, methane or iron reducing conditions was almost insignificant, but degradation did occur under sulphate reducing conditions. A detailed analysis of the data on benzene degradation under sulphate reducing conditions showed that there is a competition between bacterial populations for electron acceptors. Benzene is degraded only if electron acceptors are in excess and if no other easily degradable carbon source is present.The analysis of experimental data on chlorinated solvents is more difficult because fewer studies exist and the degradation processes are slower and more complex. Significant intrinsic biodegradation occurs mainly by reductive dechlorination, with co-metabolism being important only under modified conditions. In the field, PCE (perchloroethylene) and TCE degradation occurred only under methanogenic and sulphate reducing conditions, while c-DCE was degraded in oxygenated media and finally VC degradation occurred under almost all redox potentials. The kinetics of degradation were slow, with half-lives in the order of 1 to several years. It was shown that the variability of such constants was quite high within the same site. This variability could be explained by the availability of reducing species, particularly hydrogen. By comparing the estimated and real length of solvent plumes it was shown that biodegradation was more important than transport for the sites with the most reducing conditions. At other sites, the necessity of both methanogenic conditions and a sufficient pool of electron donors in the aquifer was demonstrated. The high toxicity of VC, when compared to TCE, was of lower concern since it was shown that the plume size was equal to or smaller than that of TCE. This was due to a fast degradation kinetics for VC observed under aerobic conditions.In conclusion, the controversy surrounding the use of models based on first-order degradation constants arose because of the strong dependence of this constant on prevailing chemical conditions. If the target at risk is far away, use of the statistics on plume length existing for BTEX seems to be sufficient. However, when the benzene content is high and the target at risk is close, there is a need to predict the size of the reduced plume. The approach is the same for more substituted chlorinated solvents. The most important data, which are often missing, are the amount of total 'easily' degradable carbon (i.e. BTEX, short chain acids or alcohols) delivered by the source that will generate the reduced plume. In order to achieve a more precise prediction, models incorporating the whole redox chain need to be developed and tested against existing field data
Comparisons of degradation kinetics of chloroethenes in groundwater between microcosms and field scale
International audienceGroundwater pollution by chlorinated solvents is a major concern since several years. It has been demonstrated that in specific physicochemical conditions, microbial processes like direct reductive dechlorination allow contamination reduction at several sites. Therefore, determination of biodegradation kinetics of chloroethenes is crucial in applying Natural Attenuation protocols on contaminated sites and assessing the potential risks for human health and natural media Biodegradation of chlorinated solvents is effective in highly reduced conditions, which rarely concerns the whole contaminant plume. In this study, direct reductive dechlorination of chloroethenes was studied on two different scales, on microcosms in the laboratory and at the real scale that corresponds to the contaminated site Microcosms studies were conducted in three different ways. (1) sediments sampled from the site and mixed with groundwater modified or not by a synthetic electron donor (Na propionate, Na lactate, toluene), (2) composite sediments coming from several places of the site mixed with groundwater modified or not by a synthetic electron donor; (3) autoclaved sediments and groundwater modified or not by synthetic organic matter. Studies on the real scale were conducted by the achievement of a synthesis of historical data (hydrogeological, geological and physicochemical data) of a polluted site. The synthesis of physicochemical data and then modelling the real site revealed the presence of degradation products of chloroethenes in the plume : cis-1,2-DCE and VC The results of comparisons of degradation kinetics obtained on the laboratory and the field under the same physicochemical conditions showed significant differences. Indeed, biodegradation of chlorinated solvents were faster in lab studies than in the field at the global scale. The existence of chlorinated ethenes biotransformation in microcosms confirmed the presence of a bacterial population able to catalyse reductive dechlorination reaction until CV. It is also likely that the bacterial consortium permitted to degrade other species like electron acceptors; detection of sulphide ions and Fe(II) and the presence of a black precipitate of FeS are proofs of sulphate reducing, ferro reducing and dechlorinating activities. The clear difference that there is between kinetics of degradation on microcosms and field scale could be explained by differences in chemical conditions that are not optimal everywhere in the plume of pollutants. The differences of chemical conditions (electron acceptors, type of natural organic matter, pH, redox potential...) are investigated in details to explain the differences in kinetic constant
Mid-infrared VISIR and Spitzer observations of the surroundings of the magnetar SGR 1806-20
We report mid-infrared observations of SGR 1806-20 and its environment - with
the highest spatial resolution in this domain to date - using ESO/VISIR in 2005
and 2006, and we retrieved Spitzer/IRAC-MIPS archival data of the same field.
We aimed at studying the mid-infrared emission of the stars associated with
the same cluster as SGR 1806-20, to detect variations that could be due to the
high-energy activity of the magnetar through interaction with the dust. We also
aimed at studying the morphology of the cloud close to the centre of the
cluster.
We performed broadband photometry of three stars - LBV 1806-20, a WC9 and an
O/B supergiant - on our VISIR images, as well as on the IRAC data. We then
built and fitted their broadband spectral energy distributions with a
combination of two absorbed black bodies, representing their stellar
components, as well as a possible mid-infrared excess, in order to derive their
physical parameters.
We show that LBV 1806-20 and the WC9 star exhibit a mid-infrared excess,
likely because of the presence of circumstellar dust related to their winds. We
also show that only LBV 1806-20 had a variable flux over a period of two years,
variability which is due to its LBV nature rather than to a heating of the gas
and dust cloud by the high-energy emission of SGR 1806-20. Finally, differences
in the intrinsic absorptions of the three stars show an inhomogeneous structure
of the density of the gas and dust cloud in the massive star cluster.Comment: 9 pages, 5 figures, 4 tables, accepted in A&
The SVOM gamma-ray burst mission
We briefly present the science capabilities, the instruments, the operations,
and the expected performance of the SVOM mission. SVOM (Space-based multiband
astronomical Variable Objects Monitor) is a Chinese-French space mission
dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM
mission encompasses a satellite carrying four instruments to detect and
localize the prompt GRB emission and measure the evolution of the afterglow in
the visible band and in X-rays, a VHF communication system enabling the fast
transmission of SVOM alerts to the ground, and a ground segment including a
wide angle camera and two follow-up telescopes. The pointing strategy of the
satellite has been optimized to favor the detection of GRBs located in the
night hemisphere. This strategy enables the study of the optical emission in
the first minutes after the GRB with robotic observatories and the early
spectroscopy of the optical afterglow with large telescopes to measure the
redshifts. The study of GRBs in the next decade will benefit from a number of
large facilities in all wavelengths that will contribute to increase the
scientific return of the mission. Finally, SVOM will operate in the era of the
next generation of gravitational wave detectors, greatly contributing to
searches for the electromagnetic counterparts of gravitational wave triggers at
Xray and gamma-ray energies.Comment: 13 pages, 5 figures, published by PoS, proceedings of the conference
Swift: 10 Years of Discovery, 2-5 December 2014, La Sapienza University,
Rome, Ital
The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations
Gamma-ray bursts (GRB), at least those with a duration longer than a few
seconds are the most energetic events in the Universe and occur at cosmological
distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide
multi-wavelength observations of GRB, to study their astrophysics and to use
them as cosmological probes. Furthermore in 2009 ECLAIRs is expected to be the
only space borne instrument capable of providing a GRB trigger in near
real-time with sufficient localization accuracy for GRB follow-up observations
with the powerful ground based spectroscopic telescopes available by then. A
"Phase A study" of the ECLAIRs project has recently been launched by the French
Space Agency CNES, aiming at a detailed mission design and selection for flight
in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the
"Myriade" family and dedicated ground-based optical telescopes. The satellite
payload combines a 2 sr field-of-view coded aperture mask gamma-camera using
6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in
the 4 to 50 keV energy band, together with a soft X-ray camera for onboard
position refinement to 1 arcmin. The ground-based optical robotic telescopes
will detect the GRB prompt/early afterglow emission and localize the event to
arcsec accuracy, for spectroscopic follow-up observations.Comment: 7 pages, 1 figure, proceedings of the conference "New Developments in
Photodetection", Beaune (France), June 25005. Submitted to NIM-A (Elsevier
Science
La "Zone minéralisée de l'Entre-deux-Mers" : Caractérisation hydrogéologique, géochimique et isotopique - CARISMEAU 2.
Au nord du Bassin Adour-Garonne, la ressource en eau principalement exploitée pour l'alimentation en eau potable est l'aquifère Eocène (masse d'eau 5071). Le projet de recherche CARISMEAU 2, initié début 2009 s'inscrit étroitement dans le cadre de la Directive Cadre sur l'Eau. Il vise à mieux comprendre les hétérogénéités et les interconnections au sein de la masse d'eau 5071. En effet, cet aquifère présente des teneurs anomaliques en sulfates et fluor qui induisent des difficultés d'exploitation de la ressource. L'origine de ces minéralisations excessives, réparties de façon hétérogène, n'est pas encore connue. Le projet CARISMEAU 2, auquel est associée la thèse " Zone minéralisée de l'Entre-deux-Mers ", met en application une approche couplée hydrogéologique, géochimique et isotopique. Les objectifs sont de mieux connaître l'origine de la salinité et de définir les circulations de ces eaux minéralisées dans l'aquifère Eocène, lui-même compris au sein du système aquifère multicouche du Bassin aquitain. Afin de mieux caractériser cette masse d'eau, une cinquantaine de points ont été suivis fin 2009. Des méthodes de géochimie et de géochimie isotopique classiques sont utilisées, mais aussi des méthodes isotopiques innovantes et/ou expérimentales. Les premiers résultats des analyses géochimiques et multi-isotopiques sont présentés dans l'objectif de mieux comprendre l'origine de ces éléments, leur comportement et leur migration dans les aquifères
- …