314 research outputs found

    Challenges and Solutions to the Measurement of Neurocognitive Mechanisms in Developmental Settings

    Get PDF
    Identifying early neurocognitive mechanisms that confer risk for mental health problems is one important avenue as we seek to develop successful early interventions. Currently, however, we have limited understanding of the neurocognitive mechanisms involved in shaping mental health trajectories from childhood through young adulthood, and this constrains our ability to develop effective clinical interventions. In particular, there is an urgent need to develop more sensitive, reliable, and scalable measures of individual differences for use in developmental settings. In this review, we outline methodological shortcomings that explain why widely used task-based measures of neurocognition currently tell us little about mental health risk. We discuss specific challenges that arise when studying neurocognitive mechanisms in developmental settings, and we share suggestions for overcoming them. We also propose a novel experimental approach—which we refer to as “cognitive microscopy”—that involves adaptive design optimization, temporally sensitive task administration, and multilevel modeling. This approach addresses some of the methodological shortcomings outlined above and provides measures of stability, variability, and developmental change in neurocognitive mechanisms within a multivariate framework

    Developmental and individual differences in the precision of visuospatial memory

    Get PDF
    Our ability to retain visuospatial information over brief periods of time is severely limited and develops gradually. In childhood, visuospatial short-term and working memory are typically indexed using span-based measures. However, whilst these standardized measures have been successful in characterizing developmental and individual differences, each individual trial only provides a binary measure of a child's performance-they are either correct or incorrect. Here we used a novel continuous report paradigm, in combination with probabilistic modeling, to explore developmental and individual differences in how likely children were to recall memoranda, and how precisely they could report them. Taking this approach revealed a number of novel findings: (i) a concurrent processing demand negatively impacted upon both of these parameters, increasing the guessing rate and making children less precise; (ii) older children (aged 10-12, N = 20) were significantly less likely to guess, but when they did remember the target were no more precise in reporting it than younger children (aged 7-9, N = 20); (iii) children's performance on standardized short-term and working memory tasks was significantly associated with both the guessing likelihood, and the precision of target responding, on the continuous report task. In short, we show that continuous report paradigms can offer interesting insight into processes that underlie developmental and individual differences in visuospatial memory in childhood

    BATMAN-an R package for the automated quantification of me- tabolites from NMR spectra using a Bayesian Model

    Get PDF
    ABSTRACT Motivation: NMR spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. Results: We present the Bayesian AuTomated Metabolite Analyser for NMR spectra (BATMAN), an R package which deconvolutes peaks from 1-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov Chain Monte Carlo (MCMC) algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists

    Deployment of spatial attention towards locations in memory representations: an EEG study

    Get PDF
    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    Aging Kit Mutant Mice Develop Cardiomyopathy

    Get PDF
    Both bone marrow (BM) and myocardium contain progenitor cells expressing the c-Kit tyrosine kinase. The aims of this study were to determine the effects of c-Kit mutations on: i. myocardial c-Kit+ cells counts and ii. the stability of left ventricular (LV) contractile function and structure during aging. LV structure and contractile function were evaluated (echocardiography) in two groups of Kit mutant (W/Wv and W41/W42) and in wild type (WT) mice at 4 and 12 months of age and the effects of the mutations on LV mass, vascular density and the numbers of proliferating cells were also determined. In 4 month old Kit mutant and WT mice, LV ejection fractions (EF) and LV fractional shortening rates (FS) were comparable. At 12 months of age EF and FS were significantly decreased and LV mass was significantly increased only in W41/W42 mice. Myocardial vascular densities and c-Kit+ cell numbers were significantly reduced in both mutant groups when compared to WT hearts. Replacement of mutant BM with WT BM at 4 months of age did not prevent these abnormalities in either mutant group although they were somewhat attenuated in the W/Wv group. Notably BM transplantation did not prevent the development of cardiomyopathy in 12 month W41/W42 mice. The data suggest that decreased numbers and functional capacities of c-Kit+ cardiac resident progenitor cells may be the basis of the cardiomyopathy in W41/W42 mice and although defects in mutant BM progenitor cells may prove to be contributory, they are not causal

    Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer

    Get PDF
    The National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin – the latter with and without rapamycin, and two drugs previously examined: 17-α-estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17-α-estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male-specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α-glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies
    corecore