65 research outputs found

    Sensitivity analysis using Physics-informed neural networks

    Full text link
    The paper's goal is to provide a simple unified approach to perform sensitivity analysis using Physics-informed neural networks (PINN). The main idea lies in adding a new term in the loss function that regularizes the solution in a small neighborhood near the nominal value of the parameter of interest. The added term represents the derivative of the loss function with respect to the parameter of interest. The result of this modification is a solution to the problem along with the derivative of the solution with respect to the parameter of interest (the sensitivity). We call the new technique to perform sensitivity analysis within this context SA-PINN. We show the effectiveness of the technique using 3 examples: the first one is a simple 1D advection-diffusion problem to show the methodology, the second is a 2D Poisson's problem with 9 parameters of interest and the last one is a transient two-phase flow in porous media problem.Comment: 22 pages, 11 figure

    Residual-based adaptivity for two-phase flow simulation in porous media using Physics-informed Neural Networks

    Full text link
    This paper aims to provide a machine learning framework to simulate two-phase flow in porous media. The proposed algorithm is based on Physics-informed neural networks (PINN). A novel residual-based adaptive PINN is developed and compared with the residual-based adaptive refinement (RAR) method and with PINN with fixed collocation points. The proposed algorithm is expected to have great potential to be applied to different fields where adaptivity is needed. In this paper, we focus on the two-phase flow in porous media problem. We provide two numerical examples to show the effectiveness of the new algorithm. It is found that adaptivity is essential to capture moving flow fronts. We show how the results obtained through this approach are more accurate than using RAR method or PINN with fixed collocation points, while having a comparable computational cost

    Occurrence of grapevine virus A (GVA) and other closteroviruses in Tunisian grapevines affected by leafroll disease

    Get PDF
    Vorkommen von Grapevine-Virus A (GVA) und anderen Closteroviren in blattrollkranken tunesischen RebenReben, die aus den Hauptweinbaugebieten Tunesiens stammten, wurden auf die Anwesenheit von Closteroviren hin ĂŒberprĂŒft. WĂ€hrend in keiner der symptomfreien Reben Viruspartikel entdeckt wurden, enthielten alle Reben mit Blattrollsymptomen - außer zweien - Closteroviruspartikel, die durch IEM (immune electron microscopy) in konzentrierten Blattextrakten oder unmittelbar in Rohsaft durch ISEM (immunosorbent electron microscopy) identifiziert wurden. Alle vier derzeit bekannten Closteroviren (GClV-1, GClV-2, GClV-3 und GVA) waren, meistens im Gemisch, in Reben mit Blattrollsymptomen vorhanden. GClV-3 und GVA wurden in 77 bzw. 50 % der geprĂŒften Reben entdeckt. Ein tunesisches Isolat von GVA, das durch Planococcus citri auf krautige Testpflanzen ĂŒbertragen wurde, unterschied sich in biologischer Hinsicht, aber nicht in den charakteristischen physikalisch-chemischen und serologischen Eigenschaften von zwei italienischen Isolaten desselben Virus

    Efficient hydrogen storage in up-scale metal hydride tanks as possible metal hydride compression agents equipped with aluminium extended surfaces

    Get PDF
    In the current work, a three-dimensional computational study regarding coupled heat and mass transfer during both the hydrogenation and dehydrogenation process in upscale cylindrical metal hydride reactors is presented, analysed and optimized. Three different heat management scenarios were examined at the degree to which they provide improved system performance. The three scenarios were: 1) plain embedded cooling/heating tubes, 2) transverse finned tubes and 3) longitudinal finned tubes. A detailed optimization study was presented leading to the selection of the optimized geometries. In addition, two different types of hydrides, LaNi5 and an AB2-type intermetallic were studied as possible candidate materials for using as the first stage alloys in a two-stage metal hydride hydrogen compression system. As extracted from the above results, it is clear that the case of using a vessel equipped with 16 longitudinal finned tubes is the most efficient way to enhance the hydrogenation kinetics when using both LaNi5 and the AB2-alloy as the hydride agents. When using LaNi5 as the operating hydride the case of the vessel equipped with 60 embedded cooling tubes presents the same kinetic behaviour with the case of the vessel equipped with 12 longitudinal finned tubes, so in that way, by using extended surfaces to enhance the heat exchange can reduce the total number of tubes from 60 to 12. For the case of using the AB2-type material as the operating hydride the performance of the extended surfaces is more dominant and effective compared to the case of using the embedded tubes, especially for the case of the longitudinal extended surfaces

    Design and planning of a transdisciplinary investigation into farmland pollinators: rationale, co-design, and lessons learned

    Get PDF
    To provide a complete portrayal of the multiple factors negatively impacting insects in agricultural landscapes it is necessary to assess the concurrent incidence, magnitude, and interactions among multiple stressors over substantial biogeographical scales. Trans-national ecological field investigations with wide-ranging stakeholders typically encounter numerous challenges during the design planning stages, not least that the scientific soundness of a spatially replicated study design must account for the substantial geographic and climatic variation among distant sites. ‘PoshBee’ (Pan-European assessment, monitoring, and mitigation of Stressors on the Health of Bees) is a multi-partner transdisciplinary agroecological project established to investigate the suite of stressors typically encountered by pollinating insects in European agricultural landscapes. To do this, PoshBee established a network of 128 study sites across eight European countries and collected over 50 measurements and samples relating to the nutritional, toxicological, pathogenic, and landscape components of the bees’ environment. This paper describes the development process, rationale, and end-result of each aspect of the of the PoshBee field investigation. We describe the main issues and challenges encountered during the design stages and highlight a number of actions or processes that may benefit other multi-partner research consortia planning similar large-scale studies. It was soon identified that in a multi-component study design process, the development of interaction and communication networks involving all collaborators and stakeholders requires considerable time and resources. It was also necessary at each planning stage to be mindful of the needs and objectives of all stakeholders and partners, and further challenges inevitably arose when practical limitations, such as time restrictions and labour constraints, were superimposed upon prototype study designs. To promote clarity for all stakeholders, for each sub-component of the study, there should be a clear record of the rationale and reasoning that outlines how the final design transpired, what compromises were made, and how the requirements of different stakeholders were accomplished. Ultimately, multi-national agroecological field studies such as PoshBee benefit greatly from the involvement of diverse stakeholders and partners, ranging from field ecologists, project managers, policy legislators, mathematical modelers, and farmer organisations. While the execution of the study highlighted the advantages and benefits of large-scale transdisciplinary projects, the long planning period emphasized the need to formally describe a design framework that could facilitate the design process of future multi-partner collaborations
    • 

    corecore