107 research outputs found
Relation between molecular structure and ultrafast photoreactivity with application to molecular switches
Photoinduced ultrafast isomerizations are fundamental reactions in photochemistry and photobiology. This thesis aims for an understanding of the generic forces driving these reactions and a theoretical approach is set up, able to handle realistic systems, whose fast relaxation is mediated by conical intersections. The main focus is on the development of strategies for the prediction and accelerated optimization of conical intersections and their application to artificial compounds with promising physicochemical properties for technical applications as molecular switches. All calculations are based on advanced quantum chemical methods and mixed quantum-classical dynamics.
In the first part of this thesis the two-electron two-orbital theory by Michl and Bonacic-Koutecky used in its original formulation to rationalize the structure of conical intersections in charged polyene systems is extended by including the interactions of the active pair of electrons with the remaining closed-shell electrons that are present in any realistic system. A set of conditions, called resonance and heterosymmetry conditions, for the formation of conical intersections in multielectronic systems are derived and verified by calculations on the basic units ethylene, cis-butadiene and 1,3-cyclohexadiene at various geometries and functionalizational patterns. The quantitative results help to understand the role of geometrical deformations and substituent effects for the formation of conical intersections and to derive rules of thumb for their qualitative prediction in arbitrary polyenes. An extension of the rules of thumb to conical intersection seams is formulated. The strategy pursued is to divide the molecular system into basic units and into functional groups. Each unit and its intersection space are treated independently, thereby reducing the dimensionality of the search space compared to the complete molecule. Subsequently, the interconnectivity of the intersection spaces of the different units is determined and an initial guess for the complete seam is constructed. This guess is then fed into a quantum chemistry package to finalize the optimization. The strategy is demonstrated for two multi-functionalized systems, hemithioindigo-hemistilbene and trifluoromethyl-pyrrolylfulgide.
In the second part of this thesis state-of-the-art quantum chemical calculations and time-resolved transient and infrared spectroscopy are used to reconstruct the complex multi-channel isomerization mechanisms of hemithioindigo-hemistilbene and trifluoromethyl-indolylfulgide. Both the cis-trans isomerization in hemithioindigo-hemistilbene and the electrocyclic ring closure/opening in indolylfulgide are characterized by a charge transfer in the excited state. The ability of each system to stabilize this charge transfer is essential for the returning to the ground state. The relaxation to the ground state through extended regions of the seam is found to be the decisive step determining the reaction speed and the quantum yield.
In the last part of this thesis mixed quantum-classical dynamics simulations at multi-configurational perturbation theory (MS-CASPT2) level, using Tully's fewest switches surface hopping approach, are performed to study the ultrafast photoreactivity of 1,3-cyclohexadiene in the gas-phase. For this purpose a numerical routine for the efficient calculation of non-adiabatic couplings at MS-CASPT2 level is presented. The major part of the excited molecules are found to circumvent the 1B2/2A1 conical intersection and reach the conical intersection seam between the excited state and the ground state instantaneuosly. Time constants for the evolution of the wavepacket on the bright 1B2-state, the relaxation into the 2A1-state and the return to the ground state are extracted. It is demonstrated that the accessibility of the conical intersection seam depends on its energetic and spatial relation to the minimum energy path, as well as on the momentum which is accumulated during relaxation on the excited state potential energy surface
The highly excited-state manifold of guanine: calibration for nonlinear electronic spectroscopy simulations
A computational protocol based on the complete and restricted active space self-consistent field (CASSCF/RASSCF) methods and their second-order perturbation theory extensions (CASPT2/RASPT2) is employed to benchmark the highly excited-state manifold of the DNA/RNA canonical purine nucleobase guanine in vacuo. Several RASPT2 schemes are tested, displaying a steady convergence of electronic transition energies and dipole moments upon active space enlargement toward the reference values. The outcome allows calibrating and optimizing computational efforts by considering cheaper and more approximate RAS schemes that could enable the characterization of the excited-state manifolds of multi-chromophoric systems, such as DNA/RNA nucleobase dimers or multimers. Simulations of two-dimensional electronic spectra show similar trends to those observed on the other purine nucleobase adenine, deviating from this and other pyrimidine nucleobases in featuring its main excited-state absorption signal, embodied by sizable double HOMO to LUMO excitation contributions, in the UV probing window
Two-dimensional electronic spectroscopy as a tool for tracking molecular conformations in DNA/RNA aggregates
A computational strategy to simulate two-dimensional electronic spectra (2DES) is introduced, which allows characterising ground state conformations of flexible nucleobase aggregates that play a crucial role in nucleic acid photochemistry
A Unified Experimental/Theoretical Description of the Ultrafast Photophysics of Single and Double Thionated Uracils
Photoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time. The results reveal that different processes lead to the triplet states population, both directly from the ππ* absorbing state and via the intermediate nπ* dark state. Moreover, the 2,4-dithiouracil decay pathways is shown to be strongly correlated either to those of 2- or 4-thiouracil, depending on the sulfur atom on which the electronic transition localizes
Environment-Driven Coherent Population Transfer Governs the Ultrafast Photophysics of Tryptophan
: By combining UV transient absorption spectroscopy with sub-30-fs temporal resolution and CASPT2/MM calculations, we present a complete description of the primary photoinduced processes in solvated tryptophan. Our results shed new light on the role of the solvent in the relaxation dynamics of tryptophan. We unveil two consecutive coherent population transfer events involving the lowest two singlet excited states: a sub-50-fs nonadiabatic La → Lb transfer through a conical intersection and a subsequent 220 fs reverse Lb → La transfer due to solvent-assisted adiabatic stabilization of the La state. Vibrational fingerprints in the transient absorption spectra provide compelling evidence of a vibronic coherence established between the two excited states from the earliest times after photoexcitation and lasting until the back-transfer to La is complete. The demonstration of response to the environment as a driver of coherent population dynamics among the excited states of tryptophan closes the long debate on its solvent-assisted relaxation mechanisms and extends its application as a local probe of protein dynamics to the ultrafast time scales
Near-ultraviolet circular dichroism and two-dimensional spectroscopy of polypeptides
A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. In contrast to intense bands in the far-ultraviolet, near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, which were realised through the consideration of the vibrational structure of the electronic transitions of aromatic side chains
Electron and ion spectroscopy of Azobenzene in the valence and core shells
Azobenzene is a prototype and building block of a class of molecules of extreme technological interest as molecularphoto-switches. We present a joint experimental and theoretical study of its response to irradiation with light across theUV to X-ray spectrum. The study of valence and inner shell photo-ionization and excitation processes, combined withmeasurement of valence photoelectron-photoion coincidence (PEPICO) and of mass spectra across the core thresholdsprovides a detailed insight onto the site- and state-selected photo-induced processes. Photo-ionization and excita-tion measurements are interpreted via the multi-configurational restricted active space self-consistent field (RASSCF)method corrected by second order perturbation theory (RASPT2). Using static modelling, we demonstrate that thecarbon and nitrogen K edges of Azobenzene are suitable candidates for exploring its photoinduced dynamics thanks tothe transient signals appearing in background-free regions of the NEXAFS and XP
The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations
- …