105 research outputs found

    Nature of the Coast Batholith, Southeastern Alaska: Are there Archean analogs

    Get PDF
    The comparison of Phanerozoic Andean margins and their possible Archean analogs was made. Geochemical and isotopic data was presented for the episodic intrusion of the elongate, continental margin Coast batholith of southeastern Alaska and British Columbia. The batholith was characterized as having been formed in direct response to subduction in accreted terranes of oceanic or slope origin. It was concluded that there were good analogs of the Coast batholith in Archean plutonic suites

    An improved SPH scheme for cosmological simulations

    Get PDF
    We present an implementation of smoothed particle hydrodynamics (SPH) with improved accuracy for simulations of galaxies and the large-scale structure. In particular, we combine, implement, modify and test a vast majority of SPH improvement techniques in the latest instalment of the GADGET code. We use the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a time-dependent scheme for artificial viscosity, which includes a high-order gradient computation and shear flow limiter. Additionally, we include a novel prescription for time-dependent artificial conduction, which corrects for gravitationally induced pressure gradients and largely improves the SPH performance in capturing the development of gas-dynamical instabilities. We extensively test our new implementation in a wide range of hydrodynamical standard tests including weak and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas clouds. We jointly employ all modifications; however, when necessary we study the performance of individual code modules. We approximate hydrodynamical states more accurately and with significantly less noise than standard SPH. Furthermore, the new implementation promotes the mixing of entropy between different fluid phases, also within cosmological simulations. Finally, we study the performance of the hydrodynamical solver in the context of radiative galaxy formation and non-radiative galaxy cluster formation. We find galactic disks to be colder, thinner and more extended and our results on galaxy clusters show entropy cores instead of steadily declining entropy profiles. In summary, we demonstrate that our improved SPH implementation overcomes most of the undesirable limitations of standard SPH, thus becoming the core of an efficient code for large cosmological simulations.Comment: 21 figures, 2 tables, accepted to MNRA

    The Three Hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications

    Get PDF
    We introduce the The Three Hundred project, an endeavour to model 324 large galaxy clusters with full-physics hydrodynamical re-simulations. Here we present the dataset and study the differences to observations for fundamental galaxy cluster properties and scaling relations. We find that the modelled galaxy clusters are generally in reasonable agreement with observations with respect to baryonic fractions and gas scaling relations at redshift z = 0. However, there are still some (model-dependent) differences, such as central galaxies being too massive, and galaxy colours (g − r) being bluer (about 0.2 dex lower at the peak position) than in observations. The agreement in gas scaling relations down to 1013 h−1M⊙ between the simulations indicates that particulars of the sub-grid modelling of the baryonic physics only has a weak influence on these relations. We also include – where appropriate – a comparison to three semi-analytical galaxy formation models as applied to the same underlying dark matter only simulation. All simulations and derived data products are publicly available

    The Three Hundred project : A large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications

    Get PDF
    We introduce the THE THREE HUNDRED project, an endeavour to model 324 large galaxy clusters with full-physics hydrodynamical re-simulations. Here we present the data set and study the differences to observations for fundamental galaxy cluster properties and scaling relations. We find that the modelled galaxy clusters are generally in reasonable agreement with observations with respect to baryonic fractions and gas scaling relations at redshift z = 0. However, there are still some (model-dependent) differences, such as central galaxies being too massive, and galaxy colours (g − r) being bluer (about 0.2 dex lower at the peak position) than in observations. The agreement in gas scaling relations down to 1013h−1M⊙ between the simulations indicates that particulars of the sub-grid modelling of the baryonic physics only has a weak influence on these relations. We also include – where appropriate – a comparison to three semi-analytical galaxy formation models as applied to the same underlying dark-matter-only simulation. All simulations and derived data products are publicly available.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Petrogenesis of Silali volcano, Gregory Rift, Kenya.

    No full text
    Basalts of the Silali volcano are of high-Fe transitional affinity and range from plagioclase-phyric varieties, probably formed by selective accumulation, to aphyric. They have compositional similarity to oceanic island basalts, but are isotopically variable and have strong, negative Zr anomalies on chondrite-normalized plots. Major and trace element and isotopic evidence indicates that the basalts represent several liquid lines of descent, each equilibrated at crustal pressures. All Silali basalts are relatively evolved; primitive basalts were probably held close to the Moho, where they evolved by gabbro fractionation to produce basalts with less than 8% MgO. These magmas were subsequently held at several levels in the crust, including the rift-axial lava-sediment sequence. Fractionation was along a high-Fe trend through mugearite to metaluminous, two-feldspar trachyte and thence to peralkaline, one-feldspar, silica-oversaturated and -undersaturated trachytes. Magmas intermediate in composition between basalt and trachyte were very rarely erupted at Silali, but their evolution can be deduced from an extensive suite of dolerite blocks, which contain residual glasses varying from mugearitic to peralkaline phonolitic compositions. Magma mixing between basalt and trachyte has been common at Silali, implying complexity of the plumbing system. Evolution of the trachytes was by fractional crystallization combined with assimilation of crust during or after fractionation
    • …
    corecore