140 research outputs found

    'Tannat' (Vitis vinifera L.) as a model of responses to climate variability

    Get PDF
    Climate variability influence on the vine is widely studied for its impact on grape final composition and quality. During 1994-2016, thermal and water regimes and their influence on grapevine yield, sanitary status and berry composition were analyzed for 'Tannat' grown in commercial vineyards in the south of Uruguay (Lat 34° 37' S; 56° 17' W). Statistical analysis showed that the principal component analysis (PCA) separated years in three groups: Group 1: rainfall over the growing season higher than the average, limited sanitary status, acidity and yield higher than average, lower sugar content, late harvest. Group 2: greater thermal conditions and water component lower than average, better sanitary status, sugar contents and acidity lower than average, early harvest. Group 3: thermal conditions lower than average, rainfall higher during budbreak-fruitset period and lower than average in the month before harvest, berry size and sugar contents greater than average. Correlations between climate, yield and berry quality variables were established and stages of greater sensitivity to these climate elements were determined. In the studied years, climate variability within the region was high and 'Tannat' showed to be strongly influenced by such variability

    Production of gaseous and liquid bio-fuels from the upgrading of lignocellulosic bio-oil in sub- and supercritical water: effect of operating conditions on the process

    Get PDF
    This work analyses the influence of the temperature (310–450 C), pressure (200–260 bar), catalyst/biooil mass ratio (0–0.25 g catalyst/g bio-oil), and reaction time (0–60 min) on the reforming in sub- and supercritical water of bio-oil obtained from the fast pyrolysis of pinewood. The upgrading experiments were carried out in a batch micro-bomb reactor employing a co-precipitated Ni–Co/Al–Mg catalyst. This reforming process turned out to be highly customisable for the valorisation of bio-oil for the production of either gaseous or liquid bio-fuels. Depending on the operating conditions and water regime (sub/supercritical), the yields to upgraded bio-oil (liquid), gas and solid varied as follows: 5–90%, 7–91% and 3–31%, respectively. The gas phase, having a LHV ranging from 2 to 17 MJ/m3 STP, was made up of a mixture of H2 (9–31 vol.%), CO2 (41–84 vol.%), CO (1–22 vol.%) and CH4 (1–45 vol.%). The greatest H2 production from bio-oil (76% gas yield with a relative amount of H2 of 30 vol.%) was achieved under supercritical conditions at a temperature of 339 C, 200 bar of pressure and using a catalyst/bio-oil ratio of 0.2 g/g for 60 min. The amount of C, H and O (wt.%) in the upgraded bio-oil varied from 48 to 74, 4 to 9 and 13 to 48, respectively. This represents an increase of up to 37% and 171% in the proportions of C and H, respectively, as well as a decrease of up to 69% in the proportion of O. The HHV of the treated bio-oil shifted from 20 to 35 MJ/kg, which corresponds to an increase of up to 89% with respect to the HHV of the original bio-oil. With a temperature of around 344 C, a pressure of 233 bar, a catalyst/bio-oil ratio of 0.16 g/g and a reaction time of 9 min a compromise was reached between the yield and the quality of the upgraded liquid, enabling the transformation of 62% of the bio-oil into liquid with a HHV (29 MJ/kg) about twice as high as that of the original feedstock (17 MJ/kg)

    Effect of elicitors on holm oak somatic embryo development and efficacy inducing tolerance to Phytophthora cinnamomi

    Get PDF
    Holm oak trees (Quercus ilex L.) mortality is increasing worryingly in the Mediterranean area in the last years. To a large degree this mortality is caused by the oomycete Phytophthora spp., which is responsible for forest decline and dieback in evergreen oak forest areas of the southwestern Iberian Peninsula. This study is based on the possibility of applying chemical elicitors or filtered oomycete extracts to holm oak somatic embryos (SE) in order to induce epigenetic memory, priming, that may increase tolerance to the pathogen in future infections. To this end, we first examined the effect of priming treatments on SE development and its oxidative stress state, to avoid elicitors that may cause damage to embryogenic tissues. Both, the sterile oomycete extracts and the chemical elicitor methyl jasmonate (MeJA) did not produce any detrimental effect on SE growth and development, unlike the elicitors benzothiadiazole (BTH) and p-aminobenzoic acid (PABA) that reduced the relative weight gain and resulted in necrotic and deformed SE when were applied at high concentrations (25 µM BTH or 50 µM PABA) in accordance with their high malondialdehyde content. No significant differences among elicitation treatments were found in dual culture bioassays,  although those SEs elicited with 50 µM MeJA increased H2O2 production after challenged against active oomycete indicating the activation of stress response. Since this elicitation treatment did not produce any adverse effect in the embryogenic process we suggest that could be used in further priming experiments to produce holm oak plants adapted to biotic stress

    Caffeinating the biofuels market:Effect of the processing conditions during the production of biofuels and high-value chemicals by hydrothermal treatment of residual coffee pulp

    Get PDF
    5 figures, 4 tables, supplementary information.-- © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The manufacturing of coffee, one of the most popular beverages globally, renders enormous amounts of by-products and wastes, which may trigger severe environmental issues if not treated appropriately. The coffee pulp, resulting from the wet processing of coffee, is the predominant by-product, with around 10 Mt annually produced worldwide. For the first time, this work addresses the hydrothermal treatment of coffee pulp to produce biofuels and platform molecules, scrutinising the influence of the processing conditions (temperature, pressure, reaction time and solid/water ratio) on the process. This strategy allowed the transformation of coffee pulp into bio-crude and hydrochar in different yields (10–26% and 10–42%, respectively), depending on the conditions. The bio-crude included a pool of alkanes, carboxylic acids, ketones, phenols and nitrogen species, with varying quantities of C (54–71 wt%), H (6–7 wt%), O (18–34 wt%) and N (3–5 wt%) and a calorific value shifting from 23 to 32 MJ/kg. The hydrochar contained different proportions of C (57–72 wt%), H (4–6 wt%), O (20–35 wt%) and N (2–3 wt%) and had a calorific value between 22 and 29 MJ/kg. Process optimisation showed that up to 45% of the coffee pulp could be simultaneously converted into energy-rich (29 MJ/kg), merchantable liquid (20% bio-crude) and solid (24% hydrochar) biofuels during the treatment of a 15 wt% coffee pulp suspension at 320 °C and 162 bar for 1 h. At the same time, a bio-crude with a high proportion of profitable phenolic derivatives (42%) can be attained in high yield (25%) when a 5 wt% suspension is treated at 280 °C and 120 bar for 2 h. These promising results, along with the bespoke nature of this hydrothermal treatment, are a landmark achievement for the economy and sustainability of coffee producer countries, thus representing a pioneering step change towards the sustainable management of early-stage coffee leftovers.The authors wish to express their gratefulness to FEDER, the Spanish Ministry of Science, Innovation and Universities (Grant Number ENE2017-83854-R) and the Spanish National Research Council (CSIC) (Grant Number COOPA20367) for providing financial support. Besides, Javier Remón is very grateful to the Spanish Ministry of Science, Innovation and Universities for the Juan de la Cierva (JdC) fellowships (Grant Numbers FJCI-2016-30847 and IJC2018-037110-I) awarded. Lorena Pedraza-Segura and Pedro Arcelus-Arrillaga would like to acknowledge the financial support of INIAT and DINV at Universidad Iberoamericana for their research.Peer reviewe

    Late Holocene Aleppo pine (Pinus halepensis Miller) woodlands in Mallorca (Balearic Islands, Western Mediterranean): Investigation of their distribution and the role of human management based on anthracological, dendro-anthracological and archaeopalynological data

    Get PDF
    The pioneering nature of Mediterranean pines and their phytosociological role have been largely discussed in relation to different agents (e.g., edaphic, climatic or anthropogenic). In this context, Aleppo pine is one of the most widespread pine species in the Mediterranean basin, as it is especially adapted to climatic constraints, such as drought and high seasonality, and has a high tolerance for salinity and strong coastal winds. It is also well adapted to regeneration after anthropogenic landscape disturbances, highlighting its important after-fire regeneration rates. In this sense, phytosociological studies conducted in Mediterranean landscapes have found that this species'' wide distribution is mostly due to its rapid regeneration after human landscape transformation, including fire, and the abandonment of agricultural lands. Aleppo pine is considered to broadly develop after human action in sclerophyllous formation, in which it would be scarce or absent without human intervention. Parallel, paleoenvironmental and archaeobotanical studies have attempted to trace these trends back to prehistoric times to investigate this species'' role in Late Pleistocene and Holocene vegetation and evaluate the role of climate and human action in its diachronic dynamics. In this study, we present a compendium of anthracological, dendro-anthracological and archaeopalyonological data with the objective of (i) investigating the nature and distribution of Aleppo pine on the island of Mallorca and (ii) evaluating the possibility that human action could have resulted in the spread of this pine species during the first two millennia of permanent human occupation of the island (c. 2300 cal. BCE–1st-century ACE). Investigating these archaeobotanical datasets, as well as making comparisons with anthracological and paleoenvironmental studies in neighbouring Mediterranean zones (Iberia), allowed us to attest that Aleppo pine is a natural, pre-human component of the Holocene vegetation of the island, and it is especially well-adapted to coastal environments. Moreover, we describe the trends and characteristics of the human management of pine woodlands through anthracology and dendro-anthracology, suggesting that human action did not provoke widespread growth of Aleppo pine in Mallorca at the expense of other vegetation types during prehistory. Such processes, well-documented by current phytosociological studies, probably began at some unknown point after the Romanisation of the island

    MEGARA focal plane subsystems

    Get PDF
    MEGARA (Multi-Espectrografo en GTC de Alta Resolucion para Astronomia) is the future optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for GTC. The Fiber Units are placed at one Folded Cassegrain focus and feed the spectrograph located on a Nasmyth-type platform. This paper summarizes the status of the design of the MEGARA Folded Cassegrain Subsystems after the PDR (held on March 2012), as well as the prototyping that has been carried out during this phase. The MEGARA Fiber Unit has two IFUs: a Large Compact Bundle covering 12.5 arcsec x 11.3 arcsec on sky (100 microns fiber-core), and a Small Compact Bundle, of 8.5 arcsec x 6.7 arcsec (70 microns fiber-core), plus a Fiber MOS positioner, able to place up to 100 mini-bundles 7 fibers each (100 microns fiber-core) in MOS configuration within a 3.5arcmin x 3.5arcmin FOV. A field lens provides a telecentric focal plane where the fibers are located. Microlens arrays couple the telescope beam to the collimator focal ratio at the entrance of the fibers (providing the f/17 to f/3 focal ratio reduction to enter into the fibers). Finally, the fibers, organized in bundles, end in the pseudo-slit plate, which will be placed at the entrance focal plane of the MEGARA spectrographs

    ACTION:a randomized phase 3 study of ONC201 (dordaviprone) in patients with newly diagnosed H3 K27M-mutant diffuse glioma

    Get PDF
    BACKGROUND: H3 K27M-mutant diffuse glioma primarily affects children and young adults, is associated with a poor prognosis, and no effective systemic therapy is currently available. ONC201 (dordaviprone) has previously demonstrated efficacy in patients with recurrent disease. This phase 3 trial evaluates ONC201 in patients with newly diagnosed H3 K27M-mutant glioma.METHODS: ACTION (NCT05580562) is a randomized, double-blind, placebo-controlled, parallel-group, international phase 3 study of ONC201 in newly diagnosed H3 K27M-mutant diffuse glioma. Patients who have completed standard frontline radiotherapy are randomized 1:1:1 to receive placebo, once-weekly dordaviprone, or twice-weekly dordaviprone on 2 consecutive days. Primary efficacy endpoints are overall survival (OS) and progression-free survival (PFS); PFS is assessed by response assessment in neuro-oncology high-grade glioma criteria (RANO-HGG) by blind independent central review. Secondary objectives include safety, additional efficacy endpoints, clinical benefit, and quality of life. Eligible patients have histologically confirmed H3 K27M-mutant diffuse glioma, a Karnofsky/Lansky performance status ≥70, and completed first-line radiotherapy. Eligibility is not restricted by age; however, patients must be ≥10 kg at time of randomization. Patients with a primary spinal tumor, diffuse intrinsic pontine glioma, leptomeningeal disease, or cerebrospinal fluid dissemination are not eligible. ACTION is currently enrolling in multiple international sites.</p

    An 8-mm diameter fibre robot positioner for massive spectroscopy surveys

    Get PDF
    This article has been accepted for publication in Monthly Notices of Royal Astronomical Society © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedMassive spectroscopic survey are becoming trendy in astrophysics and cosmology, as they can address new fundamental knowledge such as understanding the formation of the Milky Way and probing the nature of the mysterious dark energy. To enable massive spectroscopic surveys, new technology has been developed to place thousands of optical fibres at a given position on a focal plane. This technology needs to be: (1) accurate, with micrometer positional accuracy; (2) fast to minimize overhead; (3) robust to minimize failure; and (4) low cost. In this paper, we present the development, properties, and performance of a new single 8-mm in diameter fibre positioner robot, using two 4-mm DC-brushless gearmotors, that allows us to achieve accuracies up to 0.07 arcsec (5 μm). This device has been developed in the context of the Dark Energy Spectroscopic InstrumentWe acknowledge support from the Spanish MICINNs Consolider-Ingenio 2010 Program me under grant MultiDark CSD2009-00064, HEPHACOS S2009/ESP-1473, and MINECO Centro de Excelencia Severo Ochoa Programme under grant SEV-2012-0249. We also thank the support from a CSIC-AVS contract through MICINN grant AYA2010-21231-C02- 01, and CDTI grant IDC-20101033; and support from the Spanish MINECO research grants AYA2012-31101 and FPA2012-34694. JPK, PH and LM acknowledge support from the ERC advanced grant LIDA and from an SNF Interdisciplinary grant

    An 8-mm diameter fibre robot positioner for massive spectroscopy surveys

    Get PDF
    Massive spectroscopic survey are becoming trendy in astrophysics and cosmology, as they can address new fundamental knowledge such as understanding the formation of the Milky Way and probing the nature of the mysterious dark energy. To enable massive spectroscopic surveys, new technology has been developed to place thousands of optical fibres at a given position on a focal plane. This technology needs to be: (1) accurate, with micrometer positional accuracy; (2) fast to minimize overhead; (3) robust to minimize failure; and (4) low cost. In this paper, we present the development, properties, and performance of a new single 8-mm in diameter fibre positioner robot, using two 4-mm DC-brushless gearmotors, that allows us to achieve accuracies up to 0.07arcsec (5 ÎĽm). This device has been developed in the context of the Dark Energy Spectroscopic Instrument.
    • …
    corecore