156 research outputs found
The effect of fluid compressibility and elastic rock properties on deformation of geothermal reservoirs
A geothermal reservoir deforms when the extraction of pore fluid exceeds reservoir recharge, causing a decrease in pore pressure. The magnitude of this deformation is related to the amount of pore fluid that is extracted. Assuming compressible material properties in a homogeneous reservoir, we derive an expression for the ratio of reservoir volume change per extracted fluid mass. We show that this ratio depends on a number of parameters, notably the compressibilities of reservoir rock and pore fluid. We apply the obtained relationship to three different geothermal areas (Hellisheidi, Reykjanes and The Geysers) to illustrate under which circumstances the relation between reservoir deformation and the amount of extracted fluid is able to help us learn more about reservoir conditions. We find that the fluid compressibility, depending on whether the system is single-phase or two-phase, may explain large differences in estimates of reservoir volume changes per mass of extracted flui
The thick disk rotation-metallicity correlation as a fossil of an "inverse chemical gradient" in the early Galaxy
The thick disk rotation--metallicity correlation, \partial
V_\phi/\partial[Fe/H] =40\div 50 km s^{-1}dex^{-1} represents an important
signature of the formation processes of the galactic disk. We use
nondissipative numerical simulations to follow the evolution of a Milky Way
(MW)-like disk to verify if secular dynamical processes can account for this
correlation in the old thick disk stellar population. We followed the evolution
of an ancient disk population represented by 10 million particles whose
chemical abundances were assigned by assuming a cosmologically plausible radial
metallicity gradient with lower metallicity in the inner regions, as expected
for the 10-Gyr-old MW. Essentially, inner disk stars move towards the outer
regions and populate layers located at higher |z|. A rotation--metallicity
correlation appears, which well resembles the behaviour observed in our Galaxy
at a galactocentric distance between 8 kpc and 10 kpc. In particular,we measure
a correlation of \partial V_\phi/\partial[Fe/H]\simeq 60 km s^{-1}dex^{-1} for
particles at 1.5 kpc < |z| < 2.0 kpc that persists up to 6 Gyr. Our pure N-body
models can account for the V_\phi vs. [Fe/H] correlation observed in the thick
disk of our Galaxy, suggesting that processes internal to the disk such as
heating and radial migration play a role in the formation of this old stellar
component. In this scenario, the positive rotation-metallicity correlation of
the old thick disk population would represent the relic signature of an ancient
"inverse" chemical (radial) gradient in the inner Galaxy, which resulted from
accretion of primordial gas.Comment: Accepted for publication on Astronomy and Astrophysic
Kinematical and chemical vertical structure of the Galactic thick disk II. A lack of dark matter in the solar neighborhood
We estimated the dynamical surface mass density Sigma at the solar position
between Z=1.5 and 4 kpc from the Galactic plane, as inferred from the
kinematics of thick disk stars. The formulation is exact within the limit of
validity of a few basic assumptions. The resulting trend of Sigma(Z) matches
the expectations of visible mass alone, and no dark component is required to
account for the observations. We extrapolate a dark matter (DM) density in the
solar neighborhood of 0+-1 mM_sun pc^-3, and all the current models of a
spherical DM halo are excluded at a confidence level higher than 4sigma. A
detailed analysis reveals that a small amount of DM is allowed in the volume
under study by the change of some input parameter or hypothesis, but not enough
to match the expectations of the models, except under an exotic combination of
non-standard assumptions. Identical results are obtained when repeating the
calculation with kinematical measurements available in the literature. We
demonstrate that a DM halo would be detected by our method, and therefore the
results have no straightforward interpretation. Only the presence of a highly
prolate (flattening q>2) DM halo can be reconciled with the observations, but
this is highly unlikely in LambdaCDM models. The results challenge the current
understanding of the spatial distribution and nature of the Galactic DM. In
particular, our results may indicate that any direct DM detection experiment is
doomed to fail, if the local density of the target particles is negligible.Comment: Accepted for publication in the Astrophysical Journa
The Metallicity Distribution Functions of SEGUE G and K dwarfs: Constraints for Disk Chemical Evolution and Formation
We present the metallicity distribution function (MDF) for 24,270 G and
16,847 K dwarfs at distances from 0.2 to 2.3 kpc from the Galactic plane, based
on spectroscopy from the Sloan Extension for Galactic Understanding and
Exploration (SEGUE) survey. This stellar sample is significantly larger in both
number and volume than previous spectroscopic analyses, which were limited to
the solar vicinity, making it ideal for comparison with local volume-limited
samples and Galactic models. For the first time, we have corrected the MDF for
the various observational biases introduced by the SEGUE target selection
strategy. The SEGUE sample is particularly notable for K dwarfs, which are too
faint to examine spectroscopically far from the solar neighborhood. The MDF of
both spectral types becomes more metal-poor with increasing |Z|, which reflects
the transition from a sample with small [alpha/Fe] values at small heights to
one with enhanced [alpha/Fe] above 1 kpc. Comparison of our SEGUE distributions
to those of two different Milky Way models reveals that both are more
metal-rich than our observed distributions at all heights above the plane. Our
unbiased observations of G and K dwarfs provide valuable constraints over the
|Z|-height range of the Milky Way disk for chemical and dynamical Galaxy
evolution models, previously only calibrated to the solar neighborhood, with
particular utility for thin- and thick-disk formation models.Comment: 70 pages, 25 figures, 7 tables. Accepted by The Astrophysical Journa
Sequence variant at 4q25 near PITX2 associates with appendicitis.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesAppendicitis is one of the most common conditions requiring acute surgery and can pose a threat to the lives of affected individuals. We performed a genome-wide association study of appendicitis in 7,276 Icelandic and 1,139 Dutch cases and large groups of controls. In a combined analysis of the Icelandic and Dutch data, we detected a single signal represented by an intergenic variant rs2129979 [G] close to the gene PITX2 associating with increased risk of appendicitis (OR = 1.15, P = 1.8 × 10(-11)). We only observe the association in patients diagnosed in adulthood. The marker is close to, but distinct from, a set of markers reported to associate with atrial fibrillation, which have been linked to PITX2. PITX2 has been implicated in determination of right-left symmetry during development. Anomalies in organ arrangement have been linked to increased prevalence of gastrointestinal and intra-abdominal complications, which may explain the effect of rs2129979 on appendicitis risk
Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits
Uterine leiomyomas are common benign tumors of the myometrium. We performed a meta-analysis of two genome-wide association studies of leiomyoma in European women (16,595 cases and 523,330 controls), uncovering 21 variants at 16 loci that associate with the disease. Five variants were previously reported to confer risk of various malignant or benign tumors (rs78378222 in TP53, rs10069690 in TERT, rs1800057 and rs1801516 in ATM, and rs7907606 at OBFC1) and four signals are located at established risk loci for hormone-related traits (endometriosis and breast cancer) at 1q36.12 (CDC42/WNT4), 2p25.1 (GREB1), 20p12.3 (MCM8), and 6q26.2 (SYNE1/ESR1). Polygenic score for leiomyoma, computed using UKB data, is significantly correlated with risk of cancer in the Icelandic population. Functional annotation suggests that the non-coding risk variants affect multiple genes, including ESR1. Our results provide insights into the genetic background of leiomyoma that are shared by other benign and malignant tumors and highlight the role of hormones in leiomyoma growth
Lentiviral gene therapy rescues p47phox chronic granulomatous disease and the ability to fight Salmonella infection in mice
Chronic granulomatous disease (CGD) is an inherited primary immunodeficiency disorder characterised by recurrent and often life-threatening infections and hyperinflammation. It is caused by defects of the phagocytic NADPH oxidase, a multicomponent enzyme system responsible for effective pathogen killing. A phase I/II clinical trial of lentiviral gene therapy is underway for the most common form of CGD, X-linked, caused by mutations in the gp91phox subunit of the NADPH oxidase. We propose to use a similar strategy to tackle p47phox-deficient CGD, caused by mutations in NCF1, which encodes the p47phox cytosolic component of the enzymatic complex. We generated a pCCLCHIM-p47phox lentiviral vector, containing the chimeric Cathepsin G/FES myeloid promoter and a codon-optimised version of the human NCF1 cDNA. Here we show that transduction with the pCCLCHIM-p47phox vector efficiently restores p47phox expression and biochemical NADPH oxidase function in p47phox-deficient human and murine cells. We also tested the ability of our gene therapy approach to control infection by challenging p47phox-null mice with Salmonella Typhimurium, a leading cause of sepsis in CGD patients, and found that mice reconstituted with lentivirus-transduced hematopoietic stem cells had a reduced bacterial load compared with untreated mice. Overall, our results potentially support the clinical development of a gene therapy approach using the pCCLCHIM-p47phox vector
- …