367 research outputs found

    Spontaneous symmetry breaking as a resource for noncritically squeezed light

    Full text link
    In the last years we have proposed the use of the mechanism of spontaneous symmetry breaking with the purpose of generating perfect quadrature squeezing. Here we review previous work dealing with spatial (translational and rotational) symmetries, both on optical parametric oscillators and four-wave mixing cavities, as well as present new results. We then extend the phenomenon to the polarization state of the signal field, hence introducing spontaneous polarization symmetry breaking. Finally we propose a Jaynes-Cummings model in which the phenomenon can be investigated at the single-photon-pair level in a non-dissipative case, with the purpose of understanding it from a most fundamental point of view.Comment: Review for the proceedings of SPIE Photonics Europe. 11 pages, 5 figures

    On the organization of the nucleosomes associated with telomeric sequences

    Get PDF
    AbstractThe functions of telomeres and, probably, of interstitial telomeric sequences (ITSs) are influenced by their chromatin structure and organization. Telomeres in higher eukaryotes fold into nucleosomes that are about 20–40 bp shorter than the nucleosomes associated with bulk chromatin. Although the functional relevance of this short nucleosomal organization remains unknown, it is believed that short nucleosomes should contribute to telomere function. Whereas telomeric nucleosomes have been widely studied in different organisms, very little is known about the nucleosomal organization of ITSs. Chinese hamster ITSs have been found to associate with short nucleosomes. However, we have found that Arabidopsis thaliana ITSs fold into nucleosomes that have a repeat length similar to bulk chromatin. We discuss how the primary sequence of telomeres and ITSs could influence their nucleosomal organization

    Child and adolescent development of the brain oscillatory activity during a working memory task

    Get PDF
    The developmental trajectories of brain oscillations during the encoding and maintenance phases of a Working Memory (WM) task were calculated. The Delayed-Match-to-Sample Test (DMTS) was applied to 239 subjects of 6-29 years, while EEG was recorded. The Event-Related Spectral Perturbation (ERSP) was obtained in the range between 1 and 25 Hz during the encoding and maintenance phases. Behavioral parameters of reaction times (RTs) and response accuracy were simultaneously recorded. The results indicate a myriad of transient and sustained bursts of oscillatory activity from low frequencies (1 Hz) to the beta range (up to 19 Hz). Beta and Low-frequency ERSP increases were prominent in the encoding phase in all age groups, while low-frequency ERSP indexed the maintenance phase only in children and adolescents, but not in late adolescents and young adults, suggesting an age-dependent neural mechanism of stimulus trace maintenance. While the latter group showed Beta and Alpha indices of anticipatory attention for the retrieval phase. Mediation analysis showed an important role of early Delta-Theta and late Alpha oscillations for mediation between age and behavioral responses per-formance. In conclusion, the results show a complex pattern of oscillatory bursts during the encoding and maintenance phases with a consistent pattern of developmental changes.Agencia Estatal de Investigacion Gobierno de Espana (PID2019–105618RB-I00) and from the Agencia de Innovacion y Desarrollo de la Junta de Andalucía (P20_00537)info:eu-repo/semantics/publishedVersio

    High-speed noise-free optical quantum memory

    Full text link
    Quantum networks promise to revolutionise computing, simulation, and communication. Light is the ideal information carrier for quantum networks, as its properties are not degraded by noise in ambient conditions, and it can support large bandwidths enabling fast operations and a large information capacity. Quantum memories, devices that store, manipulate, and release on demand quantum light, have been identified as critical components of photonic quantum networks, because they facilitate scalability. However, any noise introduced by the memory can render the device classical by destroying the quantum character of the light. Here we introduce an intrinsically noise-free memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We consequently demonstrate for the first time successful storage of GHz-bandwidth heralded single photons in a warm atomic vapour with no added noise; confirmed by the unaltered photon statistics upon recall. Our ORCA memory platform meets the stringent noise-requirements for quantum memories whilst offering technical simplicity and high-speed operation, and therefore is immediately applicable to low-latency quantum networks

    Dissociation between CA3-CA1 synaptic plasticity and associative learning in TgNTRK3 transgenic mice

    Full text link
    Neurotrophins and their cognate receptors might serve as feedback regulators for the efficacy of synaptic transmission.Weanalyzed miceoverexpressing TrkC (TgNTRK3) for synaptic plasticity and the expression of glutamate receptor subunits. Animals were conditionedusing a trace [conditioned stimulus (CS), tone; unconditioned stimulus (US), shock] paradigm. A single electrical pulse presented to theSchaffer collateral– commissural pathway during the CS–US interval evoked a monosynaptic field EPSP (fEPSP) at ipsilateral CA1pyramidal cells. In wild types, fEPSP slopes increased across conditioning sessions and decreased during extinction, being linearlyrelated to learning evolution. In contrast, fEPSPs in TgNTRK3 animals reached extremely high values, not accompanied with a proportionateincrease in their learning curves. Long-term potentiation evoked in conscious TgNTRK3 was also significantly longer lasting thanin wild-type mice. These functional alterations were accompanied by significant changes inNR1andNR2BNMDAreceptor subunits, withno modification of NR1Ser 896 or NR1Ser 897 phosphorylation. No changes of AMPA and kainate subunits were detected. Results indicatethat the NT-3/TrkC cascade could regulate synaptic transmission and plasticity through modulation of glutamatergic transmission at theCA3–CA1 synapse

    Effects of ammonium nitrate, cesium chloride and tetraethylammonium on high-affinity potassium uptake in habanero pepper plantlets (Capsicum chinense Jacq.)

    Get PDF
    Potassium (K+) is an essential nutrient and the most abundant cation in plant cells. Plants have a wide variety of transport systems for K+ acquisition that catalyze K+ uptake across a wide spectrum of external K+ concentrations and mediate K+ movement within the plant, as well as its release into the environment. The KUP/HAK/KT transporter family plays a key role in K+ homeostasis in plant cells. The present study demonstrates that habanero pepper plantlets have a clear pattern of K+ uptake when resupplemented with K+ after K+ starvation. Habanero pepper plantlets, re-supplemented with a solution containing low concentrations of K+ after 72, 96 or 120 h of K+ starvation were able to decrease the amount of K+ in the solution at different time points. To study the effect of NH4+, we added different concentrations of NH4NO3 to the medium solution and demonstrated that NH4+ inhibited K+ uptake in a dose-dependent manner. When the plantlets were subjected to K+ starvation for 72 h and then resupplemented with 50 or 100 μM K+, exposure to K+ channel blockers (10 mM CsCl and 20 mM TEA) decreased their K+ uptake compared with the control treatment. A model demonstrating the process of K+ uptake through an NH4+-insensitive component was proposed.Key words: Potassium, high affinity transporters, channel blockers, ammonium

    Optimal Coherent Filtering for Single Noisy Photons

    Get PDF
    We introduce a filter using a noise-free quantum buffer with large optical bandwidth that can both filter temporal-spectral modes, as well as inter-convert them and change their frequency. We show that such quantum buffers optimally filter out temporal-spectral noise; producing identical single-photons from many distinguishable noisy single-photon sources with the minimum required reduction in brightness. We then experimentally demonstrate a noise-free quantum buffer in a warm atomic system that is well matched to quantum dots and can outperform all intensity (incoherent) filtering schemes for increasing indistinguishability.Comment: 5 pages, 4 Figure

    Integrating magnetic capabilities to intracellular chips for cell trapping

    Get PDF
    Current microtechnologies have shown plenty of room inside a living cell for silicon chips. Microchips as barcodes, biochemical sensors, mechanical sensors and even electrical devices have been internalized into living cells without interfering their cell viability. However, these technologies lack from the ability to trap and preconcentrate cells in a specific region, which are prerequisites for cell separation, purification and posterior studies with enhanced sensitivity. Magnetic manipulation of microobjects, which allows a non-contacting method, has become an attractive and promising technique at small scales. Here, we show intracellular Ni-based chips with magnetic capabilities to allow cell enrichment. As a proof of concept of the potential to integrate multiple functionalities on a single device of this technique, we combine coding and magnetic manipulation capabilities in a single device. Devices were found to be internalized by HeLa cells without interfering in their viability. We demonstrated the tagging of a subpopulation of cells and their subsequent magnetic trapping with internalized barcodes subjected to a force up to 2.57 pN (for magnet-cells distance of 4.9 mm). The work opens the venue for future intracellular chips that integrate multiple functionalities with the magnetic manipulation of cells

    Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions

    Full text link
    The generation of continuous-variable multipartite entangled states is important for several protocols of quantum information processing and communication, such as one-way quantum computation or controlled dense coding. In this article we theoretically show that multimode optical parametric oscillators can produce a great variety of such states by an appropriate control of the parametric interaction, what we accomplish by tailoring either the spatio-temporal shape of the pump, or the geometry of the nonlinear medium. Specific examples involving currently available optical parametric oscillators are given, hence showing that our ideas are within reach of present technology.Comment: 14 pages, 5 figure

    Arabidopsis thaliana telomeres exhibit euchromatic features

    Get PDF
    Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial chromosomal loci are heterochromatic. Histone methyltransferases and the chromatin remodeling protein DDM1 control subtelomeric heterochromatin formation. Whereas histone methyltransferases are required for histone H3K92Me and non-CpG DNA methylation, DDM1 directs CpG methylation but not H3K92Me or non-CpG methylation. These results argue that both kinds of proteins participate in different pathways to reinforce subtelomeric heterochromatin formation
    corecore