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Potassium (K
+
) is an essential nutrient and the most abundant cation in plant cells. Plants have a wide 

variety of transport systems for K
+
 acquisition that catalyze K

+
 uptake across a wide spectrum of 

external K
+ 

concentrations and mediate K
+
 movement within the plant, as well as its release into the 

environment. The KUP/HAK/KT transporter family plays a key role in K
+
 homeostasis in plant cells. The 

present study demonstrates that habanero pepper plantlets have a clear pattern of K
+ 
uptake when re-

supplemented with K
+
 after K

+
 starvation. Habanero pepper plantlets, re-supplemented with a solution 

containing low concentrations of K
+ 

after 72, 96 or 120 h of K
+
 starvation were able to decrease the 

amount of K
+
 in the solution at different time points. To study the effect of NH4

+
, we added different 

concentrations of NH4NO3 to the medium solution and demonstrated that NH4
+
 inhibited K

+ 
uptake in a 

dose-dependent manner. When the plantlets were subjected to K
+
 starvation for 72 h and then re-

supplemented with 50 or 100 µM K
+
, exposure to K

+ 
channel blockers (10 mM CsCl and 20 mM TEA) 

decreased their K
+ 
uptake compared with the control treatment. A model demonstrating the process of 

K
+
 uptake through an NH4

+
-insensitive component was proposed. 
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INTRODUCTION 
 
Since the work of Knop and Sachs over 130 years ago, it 
has been known that plants cannot grow in the absence 
of potassium (K

+
) (Pfeffer, 1900). K

+
 is  the  second  most  
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abundant inorganic cation in non-halophytes plants. As a 
major inorganic osmolyte, K

+
 is essential for plant  growth 

and consequently for crop production. Although, K
+
 

concentrations in soil solution are in the range of only 0.1 
to 6 mM depending on soil type (Adams,1971), plants are 
able to accumulate large amount of this element that 
constitutes 2 to 10% of plant dry weight (Leigh et al., 
1984; Tisdale et al., 1993). Plant roots absorb K

+
 at a 

wide range of external K
+ 
concentrations ([K

+
]ext), typically 

from 0.1 to 10 mM (Hawkesford and Miller, 2004). K
+
 

plays major biochemical and biophysical roles in plants 
(Szczerba et al., 2009).  K

+
 is involved in cell elongation, 

leaf movement, tropism, metabolic homeostasis, germi-
nation, seasonal changes and stomata opening/ closing;  



 
 
 
 
it is also associated with numerous biochemical 
processes (Marschner, 1995; Szczerba et al., 2009). K

+
 is 

present in all compartments of plant cells and enriched in 
two large pools: vacuole and cytosol. The role of K

+ 
in 

enzyme activation and protein biosynthesis is based on 
its high and stable concentration in the cytoplasm. K

+
 

homeostasis in the cytoplasm is essential for metabolic 
processes; therefore, cytosolic K

+ 
concentrations are 

strictly controlled and maintained in a narrow range 
(around 100 mM) that is optimal for the function of 
cytosolic enzymes (Leigh et al., 1984; Maathuis and 
Sanders, 1996; Walker et al., 1996; Cuin et al., 2003). 
Vacuolar K

+ 
content is more variable, depending on K

+
 

availability and tissue type and is observed to be in the 
range of 20 to 200 mM (Leigh et al., 1984; Walker et al., 
1996). Two major regulatory mechanisms are involved in 
maintaining K

+ 
homeostasis: K

+
 flow across the plasma 

membrane and mobilization of vacuolar K
+
 reserve 

(Fernando and Glass, 1992; Walker et al., 1996). The K
+
 

transport system in plants consists of low- and high-
affinity components (Epstein et al., 1961). At the 
molecular level, these components conventionally refer to 
channels and transporters, respectively based on their 
different properties (Maathuis and Sanders, 1994, 1997). 
The presence of several types of K

+
-transporting 

membrane proteins has been reported, including K
+
 

channels (Shaker-type K
+
 channels), two pore channels 

(the KCO/TPK family), non-selective channels (CNGC), 
K

+
 transporters (the HKT family, the KT/KUP/HAK family), 

K
+
/H

+
 antiporters (KEA) and cation/H

+
 antiporters (CHX) 

(Maser et al., 2001, 2002; Ashley et al., 2006). KT/KUP/ 
HAK transporters, together with shaker-type K

+
 channels, 

play a fundamental role in K
+
 homeostasis in plant cells, 

involved in both high- and low-affinity K
+
 uptake (Santa-

Maria et al., 1997; Rigas et al., 2001; Elumalai et al., 
2002; Vallejo et al., 2005). Previous evidence has 
suggested that these transporters are present in all plants 
(Kim et al., 1998; Rubio et al., 2000; Ahn et al., 2004) and 
have functions in the plasma membrane and tonoplast 
(Senn et al., 2001; Bañuelos et al., 2002). Reports have 
shown that the Arabidopsis genes encoding K

+
 channels 

and transporters are directly regulated by external K
+
 

concentration, although, many of these genes have also 
been shown to be induced or repressed by stress and 
hormones (Pilot et al., 2003; Gierth et al., 2005). Very 
little is known about how the K

+
 transport system and 

available supply are regulated and coordinated in plants. 
K

+
 starvation is known to activate K

+
 uptake in plants 

(Siddiqi and Glass, 1986; Benlloch et al., 1989; Kochian 
and Lucas, 1983; Fernando et al., 1990; Fernando and 
Glass, 1992; Maathius and Sanders, 1996; Shin and 
Schachtman, 2004). This activation has been conven-
tionally associated with induction of the expression of 
high-affinity transporters and considered as a major 
mechanism of adaptation to K

+
 starvation (Drew et al., 

1984; Fernando et al., 1990). 
Sensitivity  to   NH4

+ 
  is  an  important  feature  of  high- 
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affinity K

+
 uptake; in Arabidopsis (Spalding et al., 1999), 

barley (Santa-Maria et al., 2000)  and  pepper  (Martinez-
Cordero et al., 2005), both NH4

+
-sensitive and NH4

+
-

insensitive components have been identified. The NH4
+
-

sensitive component is probably mediated by HAK1 
transporters, whereas, in Arabidopsis, the NH4

+
-

insensitive component has been postulated to be 
mediated by the inward-rectifier K

+
 channel AtAKT1, 

indicating that channels may be involved in high-affinity 
K

+
 uptake in a range of K

+
 concentrations (Hirsch et al., 

1998; Spalding et al., 1999). NH4
+
 is not only an 

important tool to study the K
+
 transport system in plants 

but also used in fertilizers. The interactions between NH4
+
 

and K
+
 are very important for crop management, espe-

cially when K
+
 concentration decreases or salinity 

increases. 
Tetraethylammonium (TEA) is considered a specific 

blocker of voltage-gated K
+
 channels. Ba

2+
 and Cs

+
 inhibit 

K
+
 uptake through most K

+
 channels and some other 

transporters (Hedrich and Schroeder, 1989; Tester, 1990; 
Hille, 1992; Fu and Luan, 1998). According to the values 
of electrical distance, blockers can be classified as 
"surface" if they act at the entrance of the pore (toxins or 
quaternary ammonium ions in K

+
 channels) and as 

"deep" if they deeply enter the pore by slowly passing a 
selective filter (for example, Na

+
 and Cs

+
 in K

+ 
channels) 

(French and Shoukimas, 1985). The alkali cation Cs
+
 acts 

as a K
+
 analogue and is also toxic to plants (White and 

Broadley, 2000). It is well known that Cs
+
 is a competitive 

inhibitor of K
+
 and acts as a K

+
 channel blocker (White 

and Broadley, 2000; Zhu and Smolders, 2000); Cs
+ 

accumulation in plants decreases with increasing K
+
 

concentration (Smolders et al., 1996; Tsukada et al., 
2002). However, short-term K

+
 starvation can increase 

Cs
+
 influx, indicating the importance of internal and 

external K
+
 status (Zhu and Smolders, 2000). Fu and 

Luan (1998) reported the inhibition of AtKUP1-mediated 
K

+
 uptake by K

+ 
channel blockers, such as TEA, Cs

+
, and 

Ba
2+

. Consistent with a possible function in K
+
 uptake 

from the soil, the AtKUP1 gene is primarily expressed in 
roots. Therefore, the authors concluded that the AtKUP1 
gene product may function as a K

+
 transporter in 

Arabidopsis roots over a broad range of concentration of 
K

+
 in soil. Another possibility is that these inhibitors 

(including TEA) may block K
+
 influx through other K

+
 

transporters aside from voltage-gated K
+
 channels (Hille, 

1992). 
In pepper (Capsicum annum), it has been demon-

strated that HAK1 transporters greatly contribute to the 
high-affinity K

+
 uptake in roots (Martinez-Cordero et al., 

2004, 2005). K
+
 starvation in pepper plants promotes 

high-affinity K
+
 uptake (Km of 6 µM K

+
) that is very 

sensitive to ammonium (NH
+

4); indeed, the high-affinity 
K

+
 transporter (CaHAK1) is expressed in their roots. 

When expressed in yeast (Saccharomyces cerevisiae), 
CaHAK1 mediates high-affinity K

+
 and Rb

+
 uptake with 

Km  values  of 3.3  and  1.9 µM,  respectively. Rb
+
  uptake  



 
 
 
 
can be competitively inhibited by micromolar concen-
trations of NH

+
4 and Cs

+
 and by millimolar  concentrations 

of Na
+
 (Martinez-Cordero et al., 2004, 2005). 

To date, functional characterization in pepper plants 
about structural and regulatory elements involved in K

+
 

uptake has only been conducted in C. annum (Martinez-
Cordero et al., 2004, 2005; Rubio et al., 2000). Com-
parative studies in Capsicum will support its role as a 
model system to investigate the physiology of K

+
 uptake 

in pepper. In addition, it could be important for studying 
K

+
 nutrition of this crop under K

+
-limiting conditions and in 

the presence of abiotic stress. Consequently, intensive 
studies are necessary to elucidate the nature of the 
systems contributing to K

+
 transport in pepper plants. 

Knowledge about the effects of K
+
 starvation, K

+
 re-

supplementation and K
+
 uptake in pepper plants will allow 

more understanding of the roles of the K
+
 transport 

system. To explore the relative contribution of the 
components involved in K

+
 transport, we examined K

+
 

uptake under the conditions of K
+ 

starvation and K
+ 

re-
supplementation in habanero pepper plantlets, as well as 
the effects of NH

+
4, CsCl and TEA on K

+ 
uptake by 

habanero pepper roots. 
 
 
MATERIALS AND METHODS 
 
Plant materials 
 
Seeds of habanero pepper fruits (Capsicum chinense Jacq.) were 
used in this study. Disinfection was achieved under aseptic 
conditions. The seeds were surface-sterilized in 80% ethanol for 5 
min followed by rinses in sterilized, distilled and deionized water for 
4 min. Subsequently, 30% sodium hypochlorite was added and the 
seeds were imbibed for 15 min with continuous shaking and rinsed 
in sterile water. Finally, the seeds were left soaking in sterile water 
for 72 h and germinated in agrolite at 28°C. After seven days, the 
seedlings were placed in 600 ml plastic containers filled with a 
modified 1/5 (of its ionic strength) Hoagland solution (H1/5) 
containing both the macronutrients, including 1.2 mM KNO3, 0.8 
mM Ca(NO3)2, 0.2 mM KH2PO4 and 0.2 mM MgSO4 and the 
micronutrients, including 50 µM CaCl2, 12.5 µM H3BO3, 1 µM 
MnSO4, 1 µM ZnSO4, 0.5 µM CuSO4, 0.1 µM Na2MoO4 2H2O, 0.1 
µM NiCl2 6H2O and 10 µM Fe-EDDHA. The plantlets were grown 
under conditions of photoperiod (16 h light/8 h dark) and air 
temperature of 20 and 25°C, respectively. The relative humidity was 
65% (day) and 85% (night). The nutrient solution was replaced 
weekly with fresh K

+
-free solution (H1/5-K). In all experiments, 45-

days-old plantlets were used. 
 
 
Physiological studies of K+ uptake in pepper plantlets 
 
K+ depletion and K+ uptake 

 
For K

+ 
starvation treatment, plantlets were transferred into a K

+
-free 

nutrient solution (H1/5-K) and incubated for different time periods 
(0, 72, 96 and 120 h). This solution contained 1.4 mm Ca(NO3)2, 0.1 
mM Ca(H2PO4)2, 0.2 mM MgSO4 and the micronutrients described 
earlier. After the incubation, the plantlets with a uniform size were 
selected and homogeneously weighed in groups of 15 plantlets. 
The plantlets roots were then rinsed with cold H1/5-K solution and 
at time zero, were transferred  to  250 ml  containers  filled  with  the  

 
 
 
 
same solution supplemented with 50, 100 or 200 µM of KCl (K

+
). 

Medium samples of 1 ml were obtained at intervals of 30 min and 
K

+
 concentration was determined by atomic absorption using a 

Perkin-Elmer 5500 spectrophotometer (Boston, MA, USA). Control 
plantlets were maintained in the K

+
-containing nutrient solution 

described earlier (H1/5). 
 
 
Effect of the presence of NH4

+ or other K+ channel blockers on 
K+ uptake 
 
NH4NO3 was used as an NH4

+
 source. Plantlets were subjected to 

K
+ 

starvation for three days. Subsequently, the plantlets were 
transferred to the H1/5-K solution immediately re-supplemented 

with 50 or 100 µM KCl (K
+
) and maintained in the presence of 0, 

250, 500 or 1,000 µM NH4
+
. For channel blocker treatment, after K

+
 

re-supplementation, the plantlets were maintained in the presence 
of 10 mM CsCl or 20 mM TEA. Medium aliquots (1 ml) were 
obtained at intervals of 30 min for 5 h and their K

+
 concentrations 

were determined using a Perkin-Elmer 5500 spectrophotometer 
(Boston, MA, USA). 

 
 
RESULTS AND DISCUSSION 
 
K

+
 uptake by habanero pepper roots 

 
To evaluate the effect of K

+
 starvation on K

+
 uptake by 

pepper roots, the plantlet roots grown in the H1/5-K 
solution and maintained for different time periods were 
rinsed with the same cold solution and, at time zero, were 
transferred to containers filled with 250 ml of the H1/5-K 

solution supplemented with 50, 100 or 200 µM K
+
. The 

analysis of K
+
 uptake in a solution containing 50 µM K

+
 

showed a decrease of the K
+
 concentration in the 

solution, indicating that the plantlet roots were capable of 
absorbing external K

+
; this uptake was dependent on the 

duration of the K
+ 

starvation treatment. The plantlets 
subjected to K

+ 
starvation for 72 h exhibited an increased 

K
+
 uptake, whereas the plantlets subjected to K

+ 

starvation for 96 h showed low K
+ 

uptake that was not 
significantly different from that in control plantlets (Figure 
1a). The net K

+ 
uptake, calculated as the difference 

between total uptake (the amount of K
+
 depleted from the 

solution) and total release (the amount of K
+
 increased in 

the solution), was approximately five times higher in the 
plantlets treated with K

+ 
starvation for 72 h than that in 

the control plantlets growing in the K
+
-containing medium, 

when they were both supplemented with 50 µM K
+
 (Table 

1). However, there was no net K
+ 

uptake in the plantlets 
treated with K

+
 starvation for 96 h. Regardless of the 

duration of K
+ 
starvation that the plantlets were subjected 

to, the total K
+
 uptake under these conditions was 

between 5 and 8 µM; there were no significant 
differences among the treatments (Table 1). The net 
adsorption in the plantlets treated with K

+
 starvation for 

96 h and that in the control plantlets were much less than 
the total uptake, suggesting that K

+
 was released into the 

medium solution under these conditions. This pheno-
menon was not observed in the plantlets  treated  with  K

+ 
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Figure 1. Effect of K

+
 starvation on high-affinity K

+
 uptake. Plantlets were 

grown in the H1/5 solution (1.4 mM K
+
) for 45 days and then transferred to a 

K
+
-free solution for 0 h (close circles), 72 h (open circles), 96 h (close 

triangles) or 120 h (open triangles). Subsequently, KCl was added to the 
medium solution as a K

+
 source to a concentration of 50 µM (A), 100 µM (B) 

or 200 µM (C). Samples of medium solution were obtained at different time 
points; K

+ 
content was determined. Data represent the mean ± standard 

deviations of three independent experiments, n = 3. 



 
 
 
 

Table 1. Total and net K
+ 

uptake in habanero pepper plantlets. The plantlets were grown in the H1/5 solution (1.4 mM K
+
) for 

45 days and transferred to the H1/5-K solution for 0, 72, 96 and 120 h.  
 

Treatment 

K
+
 uptake ([KCl] µmole) 

50 100 200 

Total uptake Net uptake Total uptake Net uptake Total uptake Net uptake 

+ K
+
  

0 h 6.01±0.53 1.54±0.22 22.61±8.76 14.01±6.72 14.67±4.01 11.33±0.74 

  

- K
+
  

72 h 8.36±0.73 7.22±0.21 22.19±1.89 19.70±3.86 20.04±1.00 13.89±0.49 

96 h 5.08±1.19 0.64±2.01 22.70±2.57 20.99±0.73 11.22±1.83 2.57±1.16 

120 h N.A N.A 20.13±0.53 20.04±0.51 17.64±2.93 5.99±2.27 
 

At time zero, KCl was added to the medium solution to a concentration of 50, 100 or 200 µM. K
+
 content was measured as described 

in materials and methods. K
+
 content is expressed in micromole. Data represent the mean ± standard deviations of three independent 

experiments, n = 3. 
 
 
 

starvation for 72 h (Table 1). Maathuis and Sanders 
(1996) reported K

+
 uptake at concentrations  less  than  1 

µM in several species, whereas Sheahan et al. (1993) 
noted K

+
 uptake at 50 to 100 µM concentrations. Borges 

et al. (2006) suggested a demand for K
+
 uptake when 

habanero pepper plantlet roots were imbibed in a solution 
at a K

+ 
concentration higher than 89 µM. To prevent 

endogenous K
+
 released from the plants to external 

solution, K
+
 concentrations should be above 89 µM. In 

this study, we observed K
+
 uptake at 50 µM K

+
 without K

+
 

releasing into the medium solution, particularly with the 
72-h K

+
 starvation treatment. This result contradicts a 

previous finding reported by Borges et al. (2006). Our 
work is in agreement with the report of Martinez-Cordero 
et al. (2005) showing that C. annuum plants treated with 
K

+
 starvation for 2 to 8 h and subsequently re-supple-

mented with 50 µM K
+
 did not exhibit K

+
 uptake, whereas 

in the plants treated with K
+
 starvation for more than 24 h, 

K
+
 uptake was observed; furthermore, with K

+ 
starvation 

for a longer time, more K
+
 uptake was noted. 

When the seedlings treated with K
+
 starvation for 

different time periods were placed in the presence of 100 
µM K

+
, a significant reduction of K

+
 was observed in the 

medium solution, suggesting a K
+ 

uptake by the plantlets 
roots (Figure 1b). There was a tendency for higher K

+
 

uptake in the plantlets subjected to K
+
 starvation after 90 

min of K
+
 exposure (Figure 1b). There were no significant 

differences between the net K
+
 uptake by the K

+
-re-

supplemented plantlet roots and the control plantlets 
subjected to K

+
 starvation (20 and 14 µM, respectively; 

Table 1). Under this condition (100 µM K
+
), we did not 

observe a significant K
+
 release into the medium solution, 

evidenced by the result that the net uptake was similar to 
the total uptake in all the treatments (Table 1). The K

+
 

uptake in the plantlets exposed to 100 µM K
+
 was higher 

compared with that in the plantlets exposed to 50 µM K
+
 

(Figure 1a). Similar results have been reported in C. 
annuum plants (Martinez-Cordero et al., 2005). Further-
more, the plantlets treated with K

+
 starvation for 72 h 

showed an increased K
+
 uptake when transferred to the 

medium solution with 200 µM K
+
 (Figure 1c). The net K

+
 

uptake was higher with 72-h K
+
 starvation (13.89 ± 0.49 

µM), significantly different from that in the control 
plantlets (11.33 ± 0.74 µM) (Table 1). It is noteworthy that 
with the 96 and 120 h K

+ 
starvation treatments, the net K

+
 

uptake was significantly reduced compared with that in 
the control plantlets and this value was much lower than 
the total K

+
 uptake value under every condition, indicating 

that K
+
 was released into the medium solution (Table 1). 

In general, with 200 µm K
+
 re-supplementation, the K

+
 

uptake decreased compared with 100 µm K
+
 re-supple-

mentation, suggesting that external K
+
 concentration may 

affect the activity of K
+
 high-affinity uptake. 

 
 
Effect of NH4

+
 on K

+
 uptake 

 
We used 45-day-old habanero pepper plantlets to study 
the effect of NH4

+
 on K

+
 uptake. The experimental 

conditions were 72 h K
+
 starvation followed by a re-

supplementation with 50 or 100 µM K
+
. These conditions 

were chosen because with 72 h K
+
 starvation and the re-

supplementation with 50 µM K
+
, the net K

+ 
uptake by the 

roots was significantly higher than that with the control 
treatment, and this was the only treatment without 
inducing a K

+
 release, whereas the 72 h K

+
 starvation 

followed by 100 µM K
+
 re-supplementation caused a K

+
 

release into the solution. Under these conditions (100 
µM), the net K

+
 uptake was higher than that with the other 

treatments (50 and 200 µM). Thus, habanero pepper 
plantlets treated with 72 h K

+
 starvation and subsequently 

placed in a solution containing 50 µM K
+
 in the presence 

of 250, 500 or 1,000 µM of NH4
+
 showed a significant 

reduction in K
+
 uptake (Figure 2a). Exposure of the 

plantlets to a low concentration (250 µM) of NH4
+
 reduced 

the K
+
 content in the solution during the first 30 min,  

indicating a K
+ 
 uptake  during t his  period  (Figure 2a).  

However, from 30 min to 3 h, there was a slight increase  
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Figure 2. Effect of NH4

+
 on high-affinity K

+
 uptake. Plantlets were grown in the H1/5 

solution (1.4 mM K
+
) for 45 days and then transferred to a K

+
-
 
and nitrogen-free 

solution supplemented with 50 µM K
+
 (A) or 100 µM K

+
 (B), together with 250 µM 

NH4
+
 (open circles), 500 µM NH4

+
 (close triangles) or 1 mM NH4

+
 (open triangles), 

using NH4NO3 as a nitrogen source. Samples of medium solution were obtained at 
different time points; K

+
 content was determined. Data represent the mean ± 

standard deviation of three independent experiments, n = 3. 
 
 

in K
+
 concentration in the solution, indicating a K

+
 release 

from the roots.  After  3 h,  there  was  a  more significant 
K

+
 decrease in the solution. With the treatment of 500 or 

250 µM NH4
+
, the observation was similar, at early time 

points, K
+
 concentration in the solution increased 

(indicating a K
+
 release), whereas at later time points, K

+
 

concentration decreased or remained constant, indicating 
a small K

+ 
influx (Figure 2a). When NH4

+
 concentration 

increased to 1,000 µM, an increase in K
+
 concentration 

was observed in the solution for 5 h, indicating a K
+
 

release. As shown in Table 2, there was a reduction in 
the total K

+
 uptake in those plantlets exposed to 50 µM K

+
 

in the presence of NH4
+
 compared with that in controls. 

This reduction was NH4
+
 dose-dependent. The net K

+ 

uptake was reduced by over 60% in the plantlets 
exposed to 250 µM NH4

+
 compared with that in controls 

and higher doses of NH4
+
 led to a 100% inhibition of the 

net K
+
 uptake, significantly favoring a K

+
 release from the 

roots.  
When plantlets were treated with K

+
 starvation for 72 h 

followed by 100 µM K
+
 re-supplementation in the pre-

sence of NH4
+
 at different concentrations, the effect of  K

+ 

uptake inhibition was significant compared with the 
control plantlets (Figure 2b). There was a K

+  
release  into  



 
 
 
 

Table 2. Total and net K
+ 

uptake in habanero pepper plantlets in the presence of NH4NO3, CsCl and TEA. Plantlets were 
grown in the H1/5 solution (1.4 mM K

+
) for 45 days and transferred to the H1/5-K solution for 72 h.  

 

Parameter 

K
+
 uptake ([KCl] µmole) 

50 100 

Total uptake Net uptake Total uptake Net uptake 

Control 8.36±0.73 7.22±0.21 22.19±1.89 19.70±3.86 

[NH4NO3] µM  

250 6.07±1.92 2.69±2.07 7.69±1.57 -5.43±0.01 

500 2.14±0.45 -0.04±0.70 12.39±3.48 -0.91±0.81 

1000 0.94±0.59 -4.29±0.47 0.28±0.15 -0.03±0.02 

CsCl 10 mM 2.21±1.73 -16.19±2.39 8.35±5.9 -5.52±3.89 

TEA 20 mM 4.44±0.70 -6.42±0.47 21.36±0.25 9.72±2.11 
 

At time zero, KCl was added to the medium solution to a concentration of 50, 100, or 200 µM. K
+
 content was measured as described 

in "Materials and Methods". K
+
 content is expressed in micromole. Data represent the mean ± standard deviations of three 

independent experiments, n = 3. 
 
 
 

 
 
Figure 3. Dose-response curve of total K

+
 uptake to NH4

+
 treatment. 

Roots treated with K
+ 

starvation for 72 h were exposed to different 
concentrations of NH4

+
 (250, 500, or 1,000 µM) in the presence of 50 

µM K
+
 (○) or 100 µM (●) K

+
. Medium aliquots (1 ml) were obtained 

after 5 h; K
+
 content was determined. Data represent the mean ± 

standard deviation of three independent experiments, n = 3. 
 
 
 

the solution at the end of the evaluation period, which 
was increased in the presence of 250 or 500 µM NH4

+
. 

Also, the plantlets exposed to 100 µm K
+
 in the presence 

of NH4
+
 for 5 h showed a significant reduction in total K

+
 

uptake; this reduction was observed with both doses of 
NH4

+
 treatment (250 and 1000 µM) (Table 2). Under 

these conditions, a net K
+
 uptake did not occur; on the 

contrary, we observed a significant K
+
 release into the 

solution. 
Plotting total K

+ 
uptake versus NH4

+
 concentration, we 

observe that the total K
+ 

uptake of the plantlets treated 
with 50 µM K

+
 reduced completely in a dose-dependent 

manner (Figure 3); treatment of 340 µM NH4
+
 induced an 

approximately 50% inhibition  of  K
+
  uptake.  However,  a  



 
 
 
 
different effect was shown with the treatment of 100 µM 
K

+
: in this case, we observed a more significant reduction 

(over 60% inhibition) in total K
+ 

uptake in the plantlets 
exposed to 250 µM NH4

+
, whereas NH4

+ 
treatment 

between 250 and 500 µM did not cause an increased 
inhibition, suggesting the presence of alternative 
transportation systems that are not sensitive to NH4

+
. 

However, with an even higher dose of NH4
+
 (1,000 µM), 

the total K
+
 uptake were completely inhibited (Figure 3). It 

is necessary to note that with the 50 µM NH4
+
 treatment, 

we did not observe a reduction in K
+
 uptake (Figure 3).  

Many studies have reported that K
+
 influx mediated by 

high-affinity transport systems can be severely inhibited 
by NH4

+
 (Scherer et al., 1984; Vale et al., 1987; 1988a, b; 

Wang et al., 1996; Spalding et al., 1999; Santa-Maria et 
al., 2000; Bañuelos et al., 2002, Kronzucker et al., 200; 
Martinez-Cordero et al., 2004; Szczerba et al., 2006, 
2008 a, b; Nieves-Cordones et al., 2007). The mecha-
nism by which NH4

+
 inhibits K

+
 influx through high-affinity 

transporters has not been firmly established. However, it 
could be due to the direct competition between NH4

+
 and 

K
+
 transport systems (Vale et al., 1987; Wang et al., 

1996; White, 1996; Britto and Kronzucker, 2002, 2008). 
The plantlet response to 100 µM K

+
 observed in this 

work could be explained by the results from previous 
studies. Buschmann et al. (2000) reported an increase in 
the AKT1 gene transcript when K

+
 was eliminated in 

wheat plants, suggesting that K
+
 channels may play an 

important role in K
+
 uptake. Electrophysiological studies 

have shown that a NH4
+
-insensitive component is specific 

for Shaker K
+
 channel (Bertl et al., 1995; White, 1996; 

Hirsch et al., 1998; Moroni et al., 1998; Spalding et al., 
1999; Szczerba et al., 2008b). Finally, the differential 
NH4

+
 susceptibility between high- and low-affinity 

transport systems demonstrates the ability of AKT1 to 
mediate high-affinity K

+
 transport because high-affinity K

+ 

transport systems can be inhibited by NH4
+
 treatment in 

Arabidopsis thaliana; additionally, an Akt1 mutant 
exhibited growth inhibition at low K

+
 concentrations, 

whereas wild-type plants were less affected, indicating 
that AKT1 acts in response to K

+
 concentration change 

through high-affinity K
+ 

transport systems (Hirsch et al., 
1998; Spalding et al., 1999). According to our results, we 
propose a model to explain the behavior of K

+
 uptake by 

habanero pepper roots in the presence of NH4
+
. In the 

presence of 50 µM K
+
 and 250 or 500 µM NH4

+
, K

+
 

uptake by the roots is inhibited by NH4
+
. Thus, high-

affinity K
+
 transporters are highly sensitive to NH4

+
, 

whereas the low-affinity K
+
 transport system is inactive 

when K
+
 concentration is too low; the low-affinity K

+
 

transport system requires K
+ 

concentrations higher than 
50 µM to be activated (Figure 4a, b). In fact, when K

+
 

concentrations are increased to 100 µM in the presence 
of 250 or 500 µM of NH4

+
, an increase in K

+
 uptake 

occurs through a NH4
+
-insensitive K

+
 transport system as 

shown in Figure 4c. When NH4
+
 concentration increased 

(500  µM),  K
+
   uptake   increased  (Figure  4d);  previous  
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evidence also suggest the presence of a NH4

+
-insensitive 

K
+
 transport system mediated by AKT1 channels (Gierth 

and Masser, 2007). 
 
 
Effect of CsCl and TEA on K

+
 uptake  

 
To study the mechanisms of high-affinity K

+ 
uptake in 

habanero pepper plantlet roots, we used two compounds: 
CsCl and TEA, which have been commonly used as K

+
 

channel blockers in animal and plant cells (Tester, 1990; 
Hille, 1992; Fu and Luan, 1998; Hong-Yan et al., 2006).  

Plantlets treated with K
+
 starvation for 72 h were then 

transferred to the solution containing 50 µM K
+
 and 10 

mM CsCl. The K
+ 

uptake was higher during the first 30 
min compared with that in the control plantlets. However, 
the K

+
 content increased in the solution, indicating a K

+
 

release from the roots. This release peaked at 5 h (Figure 
4a). Total K

+
 uptake by the roots during this period was 

inhibited by over 70%; no net uptake was observed and a 
high K

+
 release into the solution was observed (Table 2).  

These results suggest that in the plantlets treated with 
10 mM CsCl, a K

+
 uptake occurred 150 min after the 

treatment and the plantlets released endogenous K
+
 that 

they contained before the treatment. Our results are in 
agreement with the previous observation by Hong-Yan et 
al. (2006) showing that in the rice roots treated with 30 
mM CsCl and 0.25 mM  K

+  
for 3 h, the K

+
 content 

decreased from 5.41 x 10
-4

 mol. g
-1

 dry weight to 4.99 x 
10

-4
 mol. g

-1
 dry weight.  

By analyzing K
+
 uptake in the solution containing 100 

µM K
+
 in the presence of 10 mM CsCl, we observed that 

K
+
 was initially released and then K

+
 uptake was 

maintained at a stable level (Figure 4b); total K
+
 uptake in 

the treated plantlets was inhibited by 62% (8.35 ± 5.90 
µM K

+
) compared with that in the control plantlets (22.19 

± 1.89 µM K
+
) and the net K

+
 uptake value was negative 

because of the observed K
+
 release into the solution 

(5.52 ± 3.89 µM; Figure 4b; Table 2). The K
+
 release of 

the 100 µM K
+
-treated plantlets was lower than that of the 

50 µM K
+
-treated plantlets. 

Regarding the effect of TEA on high-affinity K
+
 uptake, 

we observed an initial K
+
 uptake in the plantlets treated 

with K
+
 starvation for 72 h and subsequently, transferred 

to the solution with 50 µM K
+
 in the presence of 20 mM 

TEA; however, after 3 h, there was a significant K
+
 

release peaking at 5 h (Figure 4a). Total K
+
 uptake was 

reduced by almost 50% compared with that in the control; 
the release was higher than the influx; therefore, negative 
values were obtained for the net K

+ 
uptake (Table 2). 

Furthermore, when the solution with 100 µM K
+
 and 20 

mM TEA was used, a K
+ 

release was observed during the 
first 30 min, as well as an increased K

+ 
uptake in relation 

to time; this pattern sustained for 150 min and K
+ 

uptake 
was maintained at the same level until 300 min  (Figure 
4b). The TEA-treated plantlets exhibited a 4% inhibition in 
total K

+ 
uptake (21.36 ± 0.25 µM of K

+
) compared with the  



 
 
 
 

 
 
Figure 4. Effect of K

+
 transport blockers on K

+
 uptake. Plantlets were grown in 

the H1/5 solution (1.4 mM K
+
) for 45 days and then were transferred to the H1/5-

K solution re-supplemented with 50 µM K
+
 (A) or 100 µM K

+
 (B), together with 10 

mM CsCl (open circles) or 20 mM TEA (closed circles). Samples of medium 
solution were taken at different time points, K

+
 content was determined. Data 

represent the mean ± standard deviation of three independent experiments, n 
 
 
 

control plantlets (22.19 ± 1.89 µM of K
+
); the net K

+ 

uptake of the treated plantlets was 9.72 ± 2.11 µM, 51% 
lower than that of the control plantlets (19.70 ± 3.86 µM) 
(Figure 4b; Table 2). Ketchum and Poole (1990) 
previously mentioned that TEA, apparently, is a very 
ineffective K

+ 
blocker in plant cells. This view has not 

changed in recent years. In agreement with this view, 
Hong-Yan   et   al.,  (2006)   did   not  find  any  significant 
difference in K

+
 uptake in the rice plants exposed to 0.25 

mM K
+
 and 30 mM TEA; however, there are reports about 

electrophysiological studies on plant cells demonstrating 
an inhibition of K

+
 uptake in the plants exposed to TEA 

(Wegner et al., 1994). Our results are different from the 
reports from Ketchum and Poole (1990) and Hong-Yan et 
al. (2006), in habanero pepper plantlets, an inhibition of 
K

+ 
uptake in the presence of TEA was observed. This 

inhibition could occur through a dual uptake system. It 
was reported that AKT1 channels may mediate  K

+
  trans-
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Figure 5. Model illustrating the behavior of K

+
 uptake by habanero pepper roots in the presence of NH4

+
. In roots exposed to 50 

µM K
+
 in the presence of 250 µM NH4

+
 (A) or 500 µM NH4

+
 (B), K

+
 uptake was inhibited by NH4

+
. High-affinity K

+
 transporters 

were highly sensitive to NH4
+
 and the low-affinity K

+
 transport system was inactive when K

+
 concentration was too low. In roots 

exposed to 100 µM K
+
 in the presence of 250 µM NH4

+
 (C) or 500 µM NH4

+
 (D), K

+
 uptake increased through a NH4

+
-insensitive 

K
+
 transport system. When NH4

+
 concentration increased (500 µM), K

+
 uptake also increased. 

 
 
 

port at the similar level as a high-affinity transporter does 
(Hirsch et al., 1998, Spalding et al., 1999). 

In conclusion, we proposed a model to explain the 
behavior of K

+
 uptake by habanero pepper roots in the 

presence of NH4
+
. When the roots were exposed to 50 

µM K
+
, together with 250 or 500 µM NH4

+
, K

+
 uptake was 

inhibited by NH4
+
 at both concentrations, due to the fact 

that high-affinity K
+
 transporters are highly sensitive to 

NH4
+
 and this K

+
 concentration was too low to activate 

the low-affinity K
+
 uptake system (Figure 5a, b). However, 

when K
+
 concentration increased to 100 µM in the 

presence of the same concentrations of NH4
+
, K

+
 uptake 

increased (Figures 5c, d and 3), possibly by activating a 
K

+
 uptake system that is insensitive to NH4

+
 and to K

+
 

concentrations above 50 µM. When the NH4
+
 concen-

tration increased to 500 µM, K
+
 uptake also increased, 

indicating the presence of a NH4
+
-insensitive K

+
 uptake 

system mediated by AKT1 channels. These results are in 
agreement with the results from Santa-Maria et al. (2000) 
showing that at low external Rb

+
 concentrations, an NH4

+
-

sensitive component dominates Rb
+
 uptake in plants 

grown in the absence of NH4
+
, whereas Rb

+
 uptake 

preferentially occurs through an NH4
+
-insensitive pathway 

in plants grown at high external NH4
+
 concentrations. 

Previous studies have suggested that members of three 
alkali cation transporter families are likely to be involved 
in K

+
 transport into the root cytoplasm from micromolar K

+
 

concentrations: AKT1 (Sentenac et al., 1992), HKT1 
(Schachtman and Schroeder, 1994; Rubio et al., 1995) 
and   the  HAK-Kup  transporters  HvHAK1  and  At-Kup1  
 (Santa-Maria et al., 1997; Fu and Luan, 1998; Kim et al., 
1998). 

An insertional mutant line of AKT1 has been identified 
in Arabidopsis; it exhibits a conditional capacity to grow at 
micromolar K

+
 concentrations (Hirsch et al., 1998). This 

finding indicates that at least in some environments, the 
AKT1 inward-rectifier K

+
 channel could be involved in K

+
 

transport into Arabidopsis from low K
+
 concentration 

environment. Interestingly, AKT1 plants are unable to 
grow at low  external  K

+
  concentrations  unless  NH4

+ 
 is  



13428        Afr. J. Biotechnol. 
 
 
 
present at millimolar concentrations in the growth 
medium, indicating the presence of other parallel NH4

+
-

sen-sitive K
+
 transport pathways.  

NH4
+
-resistant K

+
 transport through channels may 

occur at a low external concentration of K
+
 in rice. It has 

been shown by Spalding et al. (1999) that in Arabidopsis, 
55 to 63% of K

+
 permeability in the high affinity transport 

systems HATS range can be mediated by AKT1, a 
channel believed to be the dominant mediator of low-
affinity K

+
 transport (Gierth and Maser, 2007). This 

contribution may be even higher in rice, particularly under 
the conditions in the presence of NH4

+
, as suggested by 

Rodriguez-Navarro and Rubio (2006). Moreover, it has 
been shown that membrane potentials in rice are typically 
much less negative than those in Arabidopsis, particularly 
when rice is grown in the presence of NH4

+
, which causes 

permanent membrane depolarization in rice (Britto et al., 
2001). Furthermore, NH4

+
 may promote gene expression 

of high-affinity K
+
 transporters in rice, as previously 

shown with LeHAK5 in tomato plants (Nieves-Cordones 
et al., 2007). Conversely, NH4

+
 may reduce the expres-

sion of HAK/KUP/KT transporters in rice, as previously 
observed in Arabidopsis and pepper plants (Martinez-
Cordero et al., 2005). 
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