1,706 research outputs found

    Extra-large crystal emulsion detectors for future large-scale experiments

    Full text link
    Photographic emulsion is a particle tracking device which features the best spatial resolution among particle detectors. For certain applications, for example muon radiography, large-scale detectors are required. Therefore, a huge surface has to be analyzed by means of automated optical microscopes. An improvement of the readout speed is then a crucial point to make these applications possible and the availability of a new type of photographic emulsions featuring crystals of larger size is a way to pursue this program. This would allow a lower magnification for the microscopes, a consequent larger field of view resulting in a faster data analysis. In this framework, we developed new kinds of emulsion detectors with a crystal size of 600-1000 nm, namely 3-5 times larger than conventional ones, allowing a 25 times faster data readout. The new photographic emulsions have shown a sufficient sensitivity and a good signal to noise ratio. The proposed development opens the way to future large-scale applications of the technology, e.g. 3D imaging of glacier bedrocks or future neutrino experiments.Comment: Version accepted for publication in JINS

    A new application of emulsions to measure the gravitational force on antihydrogen

    Full text link
    We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the anni- hilation vertex of antihydrogen atoms after their free fall in a horizontal vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle de- tectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.Comment: 17 pages, 14 figure

    Applicability of some Photodetectors to Iodine Pulses

    No full text

    Nuclear emulsions for the detection of micrometric-scale fringe patterns: an application to positron interferometry

    Full text link
    Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10-20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 {\mu}m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.Comment: 15 pages, 10 figure

    Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Get PDF
    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized

    Intercentre reproducibility of cardiac apparent diffusion coefficient and fractional anisotropy in healthy volunteers

    No full text
    BACKGROUND: Diffusion tensor cardiac magnetic resonance (DT-CMR) enables probing of the microarchitecture of the myocardium, but the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) reported in healthy volunteers have been inconsistent. The aim of this study was to validate a stimulated-echo diffusion sequence using phantoms, and to assess the intercentre reproducibility of in-vivo diffusion measures using the sequence. METHODS AND RESULTS: A stimulated-echo, cardiac-gated DT-CMR sequence with a reduced-field-of-view, single-shot EPI readout was used at two centres with 3 T MRI scanners. Four alkane phantoms with known diffusivities were scanned at a single centre using a stimulated echo sequence and a spin-echo Stejskal-Tanner diffusion sequence. The median (maximum, minimum) difference between the DT-CMR sequence and Stejskal-Tanner sequence was 0.01 (0.04, 0.0006) × 10(-3) mm(2)/s (2%), and between the DT-CMR sequence and literature diffusivities was 0.02 (0.05, 0.006) × 10(-3) mm(2)/s (4%). The same ten healthy volunteers were scanned using the DT-CMR sequence at the two centres less than seven days apart. Average ADC and FA were calculated in a single mid-ventricular, short axis slice. Intercentre differences were tested for statistical significance at the p < 0.05 level using paired t-tests. The mean ADC ± standard deviation for all subjects averaged over both centres was 1.10 ± 0.06 × 10(-3) mm(2)/s in systole and 1.20 ± 0.09 × 10(-3) mm(2)/s in diastole; FA was 0.41 ± 0.04 in systole and 0.54 ± 0.03 in diastole. With similarly-drawn regions-of-interest, systolic ADC (difference 0.05 × 10(-3) mm(2)/s), systolic FA (difference 0.003) and diastolic FA (difference 0.01) were not statistically significantly different between centres (p > 0.05), and only the diastolic ADC showed a statistically significant, but numerically small, difference of 0.07 × 10(-3) mm(2)/s (p = 0.047). The intercentre, intrasubject coefficients of variance were: systolic ADC 7%, FA 6%; diastolic ADC 7%, FA 3%. CONCLUSIONS: This is the first study to demonstrate the accuracy of a stimulated-echo DT-CMR sequence in phantoms, and demonstrates the feasibility of obtaining reproducible ADC and FA in healthy volunteers at separate centres with well-matched sequences and processing

    Random, blocky and alternating ordering in supramolecular polymers of chemically bidisperse monomers

    Get PDF
    As a first step to understanding the role of molecular or chemical polydispersity in self-assembly, we put forward a coarse-grained model that describes the spontaneous formation of quasi-linear polymers in solutions containing two self-assembling species. Our theoretical framework is based on a two-component self-assembled Ising model in which the bidispersity is parameterized in terms of the strengths of the binding free energies that depend on the monomer species involved in the pairing interaction. Depending upon the relative values of the binding free energies involved, different morphologies of assemblies that include both components are formed, exhibiting paramagnetic-, ferromagnetic- or anti ferromagnetic-like order,i.e., random, blocky or alternating ordering of the two components in the assemblies. Analyzing the model for the case of ferromagnetic ordering, which is of most practical interest, we find that the transition from conditions of minimal assembly to those characterized by strong polymerization can be described by a critical concentration that depends on the concentration ratio of the two species. Interestingly, the distribution of monomers in the assemblies is different from that in the original distribution, i.e., the ratio of the concentrations of the two components put into the system. The monomers with a smaller binding free energy are more abundant in short assemblies and monomers with a larger binding affinity are more abundant in longer assemblies. Under certain conditions the two components congregate into separate supramolecular polymeric species and in that sense phase separate. We find strong deviations from the expected growth law for supramolecular polymers even for modest amounts of a second component, provided it is chemically sufficiently distinct from the main one.Comment: Submitted to Macromolecules, 6 figures. arXiv admin note: substantial text overlap with arXiv:1111.176
    • …
    corecore