44 research outputs found

    Interaction of Cannabis Use Disorder and Striatal Connectivity in Antipsychotic Treatment Response

    Full text link
    Antipsychotic (AP) medications are the mainstay for the treatment of schizophrenia spectrum disorders (SSD), but their efficacy is unpredictable and widely variable. Substantial efforts have been made to identify prognostic biomarkers that can be used to guide optimal prescription strategies for individual patients. Striatal regions involved in salience and reward processing are disrupted as a result of both SSD and cannabis use, and research demonstrates that striatal circuitry may be integral to response to AP drugs. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the relationship between a history of cannabis use disorder (CUD) and a striatal connectivity index (SCI), a previously developed neural biomarker for AP treatment response in SSD. Patients were part of a 12-week randomized, double-blind controlled treatment study of AP drugs. A sample of 48 first-episode SSD patients with no more than 2 weeks of lifetime exposure to AP medications, underwent a resting-state fMRI scan pretreatment. Treatment response was defined a priori as a binary (response/nonresponse) variable, and a SCI was calculated in each patient. We examined whether there was an interaction between lifetime CUD history and the SCI in relation to treatment response. We found that CUD history moderated the relationship between SCI and treatment response, such that it had little predictive value in SSD patients with a CUD history. In sum, our findings highlight that biomarker development can be critically impacted by patient behaviors that influence neurobiology, such as a history of CUD

    Resting-State Connectivity Biomarkers of Cognitive Performance and Social Function in Individuals With Schizophrenia Spectrum Disorder and Healthy Control Subjects

    Full text link
    BACKGROUND: Deficits in neurocognition and social cognition are drivers of reduced functioning in schizophrenia spectrum disorders, with potentially shared neurobiological underpinnings. Many studies have sought to identify brain-based biomarkers of these clinical variables using a priori dichotomies (e.g., good vs. poor cognition, deficit vs. nondeficit syndrome). METHODS: We evaluated a fully data-driven approach to do the same by building and validating a brain connectivity-based biomarker of social cognitive and neurocognitive performance in a sample using resting-state and task-based functional magnetic resonance imaging (n = 74 healthy control participants, n = 114 persons with schizophrenia spectrum disorder, 188 total). We used canonical correlation analysis followed by clustering to identify a functional connectivity signature of normal and poor social cognitive and neurocognitive performance. RESULTS: Persons with poor social cognitive and neurocognitive performance were differentiated from those with normal performance by greater resting-state connectivity in the mirror neuron and mentalizing systems. We validated our findings by showing that poor performers also scored lower on functional outcome measures not included in the original analysis and by demonstrating neuroanatomical differences between the normal and poorly performing groups. We used a support vector machine classifier to demonstrate that functional connectivity alone is enough to distinguish normal and poorly performing participants, and we replicated our findings in an independent sample (n = 75). CONCLUSIONS: A brief functional magnetic resonance imaging scan may ultimately be useful in future studies aimed at characterizing long-term illness trajectories and treatments that target specific brain circuitry in those with impaired cognition and function

    Effective resting-state connectivity in severe unipolar depression before and after electroconvulsive therapy

    Get PDF
    Background Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depressive disorders. A recent multi-center study found no consistent changes in correlation-based (undirected) resting-state connectivity after ECT. Effective (directed) connectivity may provide more insight into the working mechanism of ECT. Objective We investigated whether there are consistent changes in effective resting-state connectivity. Methods This multi-center study included data from 189 patients suffering from severe unipolar depression and 59 healthy control participants. Longitudinal data were available for 81 patients and 24 healthy controls. We used dynamic causal modeling for resting-state functional magnetic resonance imaging to determine effective connectivity in the default mode, salience and central executive networks before and after a course of ECT. Bayesian general linear models were used to examine differences in baseline and longitudinal effective connectivity effects associated with ECT and its effectiveness. Results Compared to controls, depressed patients showed many differences in effective connectivity at baseline, which varied according to the presence of psychotic features and later treatment outcome. Additionally, effective connectivity changed after ECT, which was related to ECT effectiveness. Notably, treatment effectiveness was associated with decreasing and increasing effective connectivity from the posterior default mode network to the left and right insula, respectively. No effects were found using correlation-based (undirected) connectivity. Conclusions A beneficial response to ECT may depend on how brain regions influence each other in networks important for emotion and cognition. These findings further elucidate the working mechanisms of ECT and may provide directions for future non-invasive brain stimulation research.publishedVersio

    Effective resting-state connectivity in severe unipolar depression before and after electroconvulsive therapy

    Get PDF
    BACKGROUND: Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depressive disorders. A recent multi-center study found no consistent changes in correlation-based (undirected) resting-state connectivity after ECT. Effective (directed) connectivity may provide more insight into the working mechanism of ECT. OBJECTIVE: We investigated whether there are consistent changes in effective resting-state connectivity. METHODS: This multi-center study included data from 189 patients suffering from severe unipolar depression and 59 healthy control participants. Longitudinal data were available for 81 patients and 24 healthy controls. We used dynamic causal modeling for resting-state functional magnetic resonance imaging to determine effective connectivity in the default mode, salience and central executive networks before and after a course of ECT. Bayesian general linear models were used to examine differences in baseline and longitudinal effective connectivity effects associated with ECT and its effectiveness. RESULTS: Compared to controls, depressed patients showed many differences in effective connectivity at baseline, which varied according to the presence of psychotic features and later treatment outcome. Additionally, effective connectivity changed after ECT, which was related to ECT effectiveness. Notably, treatment effectiveness was associated with decreasing and increasing effective connectivity from the posterior default mode network to the left and right insula, respectively. No effects were found using correlation-based (undirected) connectivity. CONCLUSIONS: A beneficial response to ECT may depend on how brain regions influence each other in networks important for emotion and cognition. These findings further elucidate the working mechanisms of ECT and may provide directions for future non-invasive brain stimulation research

    Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: A multicenter machine learning analysis

    Get PDF
    Background Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. Methods Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. Results Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82–0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70–0.73 AUC). Conclusions These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.publishedVersio

    Independent Component Analysis of Resting State Activity in Pediatric Obsessive-Compulsive Disorder

    Get PDF
    Obsessive-compulsive disorder (OCD) is an often severely disabling illness with onset generally in childhood or adolescence. Little is known, however, regarding the pattern of brain resting state activity in OCD early in the course of illness. We therefore examined differences in brain resting state activity in patients with pediatric OCD compared with healthy volunteers and their clinical correlates. Twenty-three pediatric OCD patients and 23 healthy volunteers (age range 9-17), matched for sex, age, handedness, and IQ completed a resting state functional magnetic resonance imaging exam at 3T. Patients completed the Children\u27s Yale Brown Obsessive Scale. Data were decomposed into 36 functional networks using spatial group independent component analysis (ICA) and logistic regression was used to identify the components that yielded maximum group separation. Using ICA we identified three components that maximally separated the groups: a middle frontal/dorsal anterior cingulate network, an anterior/posterior cingulate network, and a visual network yielding an overall group classification of 76.1% (sensitivity=78.3% and specificity=73.9%). Independent component expression scores were significantly higher in patients compared with healthy volunteers in the middle frontal/dorsal anterior cingulate and the anterior/posterior cingulate networks, but lower in patients within the visual network. Higher expression scores in the anterior/posterior cingulate network correlated with greater severity of compulsions among patients. These findings implicate resting state fMRI abnormalities within the cingulate cortex and related control regions in the pathogenesis and phenomenology of OCD early in the course of the disorder and prior to extensive pharmacologic intervention. Hum Brain Mapp 35:5306-5315, 2014. (c) 2014 Wiley Periodicals, Inc

    Volume of the human hippocampus and clinical response following electroconvulsive therapy

    Get PDF
    BACKGROUND: Hippocampal enlargements are commonly reported after electroconvulsive therapy (ECT). To clarify mechanisms, we examined if ECT-induced hippocampal volume change relates to dose (number of ECT sessions and electrode placement) and acts as a biomarker of clinical outcome. METHODS: Longitudinal neuroimaging and clinical data from 10 independent sites participating in the Global ECT-Magnetic Resonance Imaging Research Collaboration (GEMRIC) were obtained for mega-analysis. Hippocampal volumes were extracted from structural magnetic resonance images, acquired before and after patients (n = 281) experiencing a major depressive episode completed an ECT treatment series using right unilateral and bilateral stimulation. Untreated nondepressed control subjects (n = 95) were scanned twice. RESULTS: The linear component of hippocampal volume change was 0.28% (SE 0.08) per ECT session (p < .001). Volume change varied by electrode placement in the left hippocampus (bilateral, 3.3 +/- 2.2%, d = 1.5; right unilateral, 1.6 +/- 2.1%, d = 0.8; p < .0001) but not the right hippocampus (bilateral, 3.0 +/- 1.7%, d = 1.8; right unilateral, 2.7 +/- 2.0%, d = 1.4; p = .36). Volume change for electrode placement per ECT session varied similarly by hemisphere. Individuals with greater treatment-related volume increases had poorer outcomes (Montgomery-Asberg Depression Rating Scale change -1.0 [SE 0.35], per 1% volume increase, p = .005), although the effects were not significant after controlling for ECT number (slope -0.69 [SE 0.38], p = .069). CONCLUSIONS: The number of ECT sessions and electrode placement impacts the extent and laterality of hippocampal enlargement, but volume change is not positively associated with clinical outcome. The results suggest that the high efficacy of ECT is not explained by hippocampal enlargement, which alone might not serve as a viable biomarker for treatment outcome

    Quasi-static pipeline in electroconvulsive therapy computational modeling

    No full text
    Background: Computational models of current flow during Electroconvulsive Therapy (ECT) rely on the quasi-static assumption, yet tissue impedance during ECT may be frequency specific and change adaptively to local electric field intensity. Objectives: We systematically consider the application of the quasi-static pipeline to ECT under conditions where 1) static impedance is measured before ECT and 2) during ECT when dynamic impedance is measured. We propose an update to ECT modeling accounting for frequency-dependent impedance. Methods: The frequency content on an ECT device output is analyzed. The ECT electrode-body impedance under low-current conditions is measured with an impedance analyzer. A framework for ECT modeling under quasi-static conditions based on a single device-specific frequency (e.g., 1 kHz) is proposed. Results: Impedance using ECT electrodes under low-current is frequency dependent and subject specific, and can be approximated at >100 Hz with a subject-specific lumped parameter circuit model but at <100 Hz increased non-linearly. The ECT device uses a 2 μA 800 Hz test signal and reports a static impedance that approximate 1 kHz impedance. Combined with prior evidence suggesting that conductivity does not vary significantly across ECT output frequencies at high-currents (800–900 mA), we update the adaptive pipeline for ECT modeling centered at 1 kHz frequency. Based on individual MRI and adaptive skin properties, models match static impedance (at 2 μA) and dynamic impedance (at 900 mA) of four ECT subjects. Conclusions: By considering ECT modeling at a single representative frequency, ECT adaptive and non-adaptive modeling can be rationalized under a quasi-static pipeline

    Diffusion tensor imaging measures of white matter compared to myelin basic protein immunofluorescence in tissue cleared intact brains.

    No full text
    We provide datasets from combined ex vivo diffusion tensor imaging (DTI) and Clear Lipid-exchanged, Anatomically Rigid, Imaging/immunostaining compatible, Tissue hYdrogel (CLARITY) performed on intact mouse brains. DTI-derived measures of fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were compared to antibody-based labeling of myelin basic protein (MBP), as measured by fluorescence microscopy. We used a customized CLARITY hydrogel solution to facilitate whole brain tissue clearing and subsequent immunolabeling. We describe how CLARITY was made compatible with magnetic resonance imaging with the intention of facilitating future multimodal imaging studies that may combine noninvasive imaging with 3D immunohistochemistry. These data and methods are related to the accompanying research article entitled, 'The role of myelination in measures of white matter integrity: Combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains' (E.H. Chang, M. Argyelan, M. Aggarwal, T-S. Chandon, K.H. Karlsgodt, S. Mori, A.K. Malhotra, 2016) [1]
    corecore